【題目】過雙曲線 (a>0,b>0)的右焦點F2(c,0)作圓x2+y2=a2的切線,切點為M,延長F2M交拋物線y2=﹣4cx于點P,其中O為坐標(biāo)原點,若 ,則雙曲線的離心率為(
A.
B.
C.
D.

【答案】D
【解析】解:如圖9,∵ ,∴M是F2P的中點. 設(shè)拋物線的焦點為F1 , 則F1為(﹣c,0),也是雙曲線的焦點.
連接PF1 , OM.∵O、M分別是F1F2和PF2的中點,∴OM為
△PF2F1的中位線.∵OM=a,∴|PF1|=2 a.∵OM⊥PF2
∴PF2⊥PF1 , 于是可得|PF2|= ,設(shè)P(x,y),則 c﹣x=2a,
于是有x=c﹣2a,y2=﹣4c(c﹣2 a),過點F2作x軸的垂線,點P到該垂線的距離為2a.
由勾股定理得 y2+4a2=4b2 , 即﹣4c(c﹣2a)+4 a2=4(c2﹣a2),
變形可得c2﹣a2=ac,兩邊同除以a2
有 e2﹣e﹣1=0,所以e= ,負(fù)值已經(jīng)舍去.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長度建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2cosθ﹣4sinθ.
(1)化曲線C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C2與x軸的一個交點的坐標(biāo)為P(m,0)(m>0),經(jīng)過點P作斜率為1的直線,l交曲線C2于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)過點P(1, ),離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F1、F2分別為橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同兩點M,N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l:kx+y+4=0(k∈R)是圓C:x2+y2+4x﹣4y+6=0的一條對稱軸,過點A(0,k)作斜率為1的直線m,則直線m被圓C所截得的弦長為(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已成橢圓C: =1(a>b>0)的左右頂點分別為A1、A2 , 上下頂點分別為B2/B1 , 左右焦點分別為F1、F2 , 其中長軸長為4,且圓O:x2+y2= 為菱形A1B1A2B2的內(nèi)切圓.
(1)求橢圓C的方程;
(2)點N(n,0)為x軸正半軸上一點,過點N作橢圓C的切線l,記右焦點F2在l上的射影為H,若△F1HN的面積不小于 n2 , 求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線
(Ⅰ)寫出曲線C1 , C2的普通方程;
(Ⅱ)過曲線C1的左焦點且傾斜角為 的直線l交曲線C2于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣ 2+(y﹣1)2=1和兩點A(﹣t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則當(dāng)t取得最大值時,點P的坐標(biāo)是( )
A.( ,
B.( ,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣ )ex , g(x)=4x2﹣4x+mln(2x)(m∈R),g(x)存在兩個極值點x1 , x2(x1<x2).
(1)求f(x1﹣x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2 ,sinB=2sinA.
(1)若C= ,求a,b的值;
(2)若cosC= ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案