【題目】已知圓C:(x﹣ )2+(y﹣1)2=1和兩點A(﹣t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則當t取得最大值時,點P的坐標是( )
A.( , )
B.( , )
C.( , )
D.( , )
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當φ變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左、右焦點為F1 , F2 , 設(shè)點F1 , F2與橢圓短軸的一個端點構(gòu)成斜邊長為4的直角三角形.
(1)求橢圓C的標準方程;
(2)設(shè)A,B,P為橢圓C上三點,滿足 = + ,記線段AB中點Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點,求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線 (a>0,b>0)的右焦點F2(c,0)作圓x2+y2=a2的切線,切點為M,延長F2M交拋物線y2=﹣4cx于點P,其中O為坐標原點,若 ,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y∈R,向量 分別為直角坐標平面內(nèi)x,y軸正方向上的單位向量,若向量 , ,且 .
(Ⅰ)求點M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)橢圓 ,P為曲線C上一點,過點P作曲線C的切線y=kx+m交橢圓E于A、B兩點,試證:△OAB的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點D為BC的中點;
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點E為A1C上的點,且滿足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個零點 (Ⅰ)當a=1時,求f(x)的最小值;
(Ⅱ)求a的取值范圍;
(Ⅲ)設(shè)x1 , x2是f(x)的兩個零點,證明:x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地政府在該地一水庫上建造一座水電站,用泄流水量發(fā)電,如圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知X∈[0,120],歷年中日泄流量在區(qū)間[30,60)的年平均天數(shù)為156天,一年按364天計.
(1)請把頻率直方圖補充完整;
(2)該水電站希望安裝的發(fā)電機盡可能運行,但每30萬立方米的日泄流量才能夠運行一臺發(fā)電機,如60≤X<90時才夠運行兩臺發(fā)電機,若運行一臺發(fā)電機,每天可獲利潤4000元,若不運行,則該臺發(fā)電機每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù).問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺發(fā)電機?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com