精英家教網 > 高中數學 > 題目詳情
設f(x)、g(x)分別是定義在R上的奇函數和偶函數,當x<0時,f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,則不等式f(x)·g(x)<0的解集是(  )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪ (0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)
D

試題分析:設F(x)="f" (x)g(x),當x<0時,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在當x<0時為增函數.
∵F(-x)="f" (-x)g (-x)="-f" (x)•g (x)=-F(x).
故F(x)為(-∞,0)∪(0,+∞)上的奇函數.
∴F(x)在(0,∞)上亦為增函數.
已知f(-3)·g(-3)=0,必有F(-3)=F(3)=0.
構造如圖的F(x)的圖象,

可知F(x)<0的解集為x∈(-∞,-3)∪(0,3).
點評:導數是一個新內容,也是高考的熱點問題,要多注意復習.解決該試題的關鍵是先根據f’(x)g(x)+f(x)g’(x)>0可確定[f(x)g(x)]'>0,進而可得到f(x)g(x)在x<0時遞增。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)
是定義在上的奇函數,函數的圖象關于軸對稱,且當時,
(I)求函數的解析式;
(II)若對于區(qū)間上任意的,都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)(注意:仙中、一中、八中的學生三問全做,其他學校的學生只做前兩問)
已知函數
(Ⅰ)若,試確定函數的單調區(qū)間;
(Ⅱ)若,且對于任意恒成立,試確定實數的取值范圍;
(Ⅲ)設函數,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)已知
(I)如果函數的單調遞減區(qū)間為,求函數的解析式;
(II)在(Ⅰ)的條件下,求函數的圖像在點處的切線方程;
(III)若不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數為自然對數的底數).
(1)求函數的最小值;
(2)若≥0對任意的恒成立,求實數的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
設函數.
(Ⅰ)若曲線在點處與直線相切,求的值;
(Ⅱ)求函數的極值點與極值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函數,求實數a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)設函數f(x)=x2+ex-xex.(1)求f(x)的單調區(qū)間;
(2)若當x∈[-2,2]時,不等式f(x)>m恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,且其導函數的圖像過原點.
(1)當時,求函數的圖像在處的切線方程;
(2)若存在,使得,求的最大值;

查看答案和解析>>

同步練習冊答案