【題目】為了解某班學(xué)生喜好體育運(yùn)動(dòng)是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

5

女生

10

合計(jì)

50

已知按喜好體育運(yùn)動(dòng)與否,采用分層抽樣法抽取容量為10的樣本,則抽到喜好體育運(yùn)動(dòng)的人數(shù)為6.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)能否在犯錯(cuò)概率不超過(guò)0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明理由.

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(1)見(jiàn)解析; (2)在犯錯(cuò)誤率不超過(guò)0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān).

【解析】

(1)根據(jù)分層抽樣比計(jì)算出全班喜歡體育運(yùn)動(dòng)的人數(shù)和不喜歡體育運(yùn)動(dòng)的人數(shù),可將列聯(lián)表補(bǔ)充完整;
(2)根據(jù)公式計(jì)算K2,對(duì)照臨界值表作結(jié)論.

(1)設(shè)喜好體育運(yùn)動(dòng)人數(shù)為,則 .

所以

列聯(lián)表補(bǔ)充如下:

喜好體育運(yùn)動(dòng)

不喜好體育運(yùn)動(dòng)

合計(jì)

男生

20

5

25

女生

10

15

25

合計(jì)

30

20

50

(2)因?yàn)?/span>

所以可以在犯錯(cuò)誤率不超過(guò)0.01的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作垂直與軸的直線交雙曲線于,兩點(diǎn),若為銳角三角形,則雙曲線的離心率的取值范圍是_______

【答案】

【解析】

根據(jù)雙曲線的通徑求得點(diǎn)的坐標(biāo),將三角形為銳角三角形,轉(zhuǎn)化為,即,將表達(dá)式轉(zhuǎn)化為含有離心率的不等式,解不等式求得離心率的取值范圍.

根據(jù)雙曲線的通徑可知,由于三角形為銳角三角形,結(jié)合雙曲線的對(duì)稱性可知,故,即,即,解得,故離心率的取值范圍是.

【點(diǎn)睛】

本小題主要考查雙曲線的離心率的取值范圍的求法,考查雙曲線的通徑,考查雙曲線的對(duì)稱性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.本小題的主要突破口在將三角形為銳角三角形,轉(zhuǎn)化為,利用列不等式,再將不等式轉(zhuǎn)化為只含離心率的表達(dá)式,解不等式求得雙曲線離心率的取值范圍.

型】填空
結(jié)束】
17

【題目】已知命題:方程有兩個(gè)不相等的實(shí)數(shù)根;命題:不等式的解集為.若為真,為假,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】梯形頂點(diǎn)在以為直徑的圓上,米.

(1)如圖1,若電熱絲由這三部分組成,在上每米可輻射1單位熱量,在上每米可輻射2單位熱量,請(qǐng)?jiān)O(shè)計(jì)的長(zhǎng)度,使得電熱絲的總熱量最大,并求總熱量的最大值;

(2)如圖2,若電熱絲由弧和弦這三部分組成,在弧上每米可輻射1單位熱量,在弦上每米可輻射2單位熱量,請(qǐng)?jiān)O(shè)計(jì)的長(zhǎng)度,使得電熱絲輻射的總熱量最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時(shí),有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某面包推出一款新面包,每個(gè)面包的成本價(jià)為4元,售價(jià)為10元,該款面包當(dāng)天只出一爐(一爐至少15個(gè),至多30個(gè)),當(dāng)天如果沒(méi)有售完,剩余的面包以每個(gè)2元的價(jià)格處理掉,為了確定這一爐面包的個(gè)數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個(gè)),整理得下表:

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個(gè))線性相關(guān),求關(guān)于的線性回歸方程;

(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個(gè)數(shù)為24,記當(dāng)日這款新面包獲得的總利潤(rùn)為(單位:元).

(ⅰ)若日需求量為15個(gè),求

(ⅱ)求的分布列及其數(shù)學(xué)期望.

相關(guān)公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C 的左、右焦點(diǎn)為F1F2,設(shè)點(diǎn)F1,F2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成斜邊長(zhǎng)為4的直角三角形.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)A,B,P為橢圓C上三點(diǎn),滿足,記線段AB中點(diǎn)Q的軌跡為E,若直線lyx1與軌跡E交于M,N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的圖象為C,則下列結(jié)論中正確的是(

A.圖象C關(guān)于直線對(duì)稱

B.圖象C關(guān)于點(diǎn)對(duì)稱

C.函數(shù)在區(qū)間內(nèi)是增函數(shù)

D.把函數(shù)的圖象上點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半(縱坐標(biāo)不變)可以得到圖象C

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),常數(shù)).

1)當(dāng)時(shí),討論函數(shù)的奇偶性并說(shuō)明理由;

2)若函數(shù)在區(qū)間上單調(diào),求正數(shù)的取值范圍;

3)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼t

1

2

3

4

5

6

年產(chǎn)量y(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(Ⅱ)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:.(參考數(shù)據(jù):,計(jì)算結(jié)果保留小數(shù)點(diǎn)后兩位)

查看答案和解析>>

同步練習(xí)冊(cè)答案