【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為2.

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)拋物線的準(zhǔn)線與軸交于點(diǎn),直線過點(diǎn)且與拋物線交于兩點(diǎn)(點(diǎn)在點(diǎn),之間),點(diǎn)滿足,求的面積之和取得最小值時(shí)直線的方程.

【答案】(Ⅰ)(Ⅱ).

【解析】

(Ⅰ)由題意知,拋物線的焦點(diǎn),把點(diǎn)代入拋物線方程,再結(jié)合點(diǎn)到其焦點(diǎn)的距離為2,利用兩點(diǎn)間距離公式得到關(guān)于的方程,解方程即可求解;

(Ⅱ)由(Ⅰ)知,點(diǎn),易知直線的斜率存在,且不為零,設(shè)其方程為

設(shè),,由,利用平面向量的坐標(biāo)運(yùn)算可得,,聯(lián)立直線方程和拋物線方程得到關(guān)于的一元二次方程,利用韋達(dá)定理求出的值,利用數(shù)形結(jié)合可得,,再利用基本不等式求最值即可求解.

(Ⅰ)的焦點(diǎn)為,依題意有,解得

所以,拋物線的標(biāo)準(zhǔn)方程為.

(Ⅱ)由(Ⅰ)知,拋物線的標(biāo)準(zhǔn)方程為,其準(zhǔn)線方程為:,

所以點(diǎn)易知直線的斜率存在,且不為零,其方程為,

設(shè),,因?yàn)?/span>,即,

,聯(lián)立方程,消去,得,

根據(jù)題意,作圖如下:

.

當(dāng)且僅當(dāng),即時(shí),

的面積之和最小,最小值為.

時(shí),,直線的方程為;

時(shí),,,直線的方程為,

的面積之和最小值時(shí)直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著一帶一路倡議的推進(jìn),中國與沿線國家旅游合作越來越密切,中國到一帶一路沿線國家的游客人也越來越多,如圖是20132018年中國到一帶一路沿線國家的游客人次情況,則下列說法正確的是(

20132018年中國到一帶一路沿線國家的游客人次逐年增加

20132018年這6年中,2014年中國到一帶一路沿線國家的游客人次增幅最小

20162018年這3年中,中國到一帶一路沿線國家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為為橢圓上任意一點(diǎn),且已知.

1)若橢圓的短軸長為,求的最大值;

2)若直線交橢圓的另一個點(diǎn)為,直線軸于點(diǎn),點(diǎn)關(guān)于直線對稱點(diǎn)為,且,三點(diǎn)共線,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體是由圓柱切割而成的陰影部分構(gòu)成,其中,為下底面圓直徑的兩個端點(diǎn),,為上底面圓直徑的兩個端點(diǎn),且,圓柱底面半徑是1,高是2,則空間幾何體可以無縫的穿過下列哪個圖形(

A.橢圓B.等腰直角三角形C.正三角形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

1)若過點(diǎn),且,求的斜率;

2)若,且的斜率為,當(dāng)時(shí),求軸上的截距的取值范圍(用表示),并證明的平分線始終與軸平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗(yàn).已知一個科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司以客戶滿意為出發(fā)點(diǎn),隨機(jī)抽選2000名客戶,以調(diào)查問卷的形式分析影響客戶滿意度的各項(xiàng)因素.每名客戶填寫一個因素,下圖為客戶滿意度分析的帕累托圖.帕累托圖用雙直角坐標(biāo)系表示,左邊縱坐標(biāo)表示頻數(shù),右邊縱坐標(biāo)表示頻率,分析線表示累計(jì)頻率,橫坐標(biāo)表示影響滿意度的各項(xiàng)因素,按影響程度(即頻數(shù))的大小從左到右排列,以下結(jié)論正確的個數(shù)是( ).

35.6%的客戶認(rèn)為態(tài)度良好影響他們的滿意度;

156位客戶認(rèn)為使用禮貌用語影響他們的滿意度;

③最影響客戶滿意度的因素是電話接起快速;

④不超過10%的客戶認(rèn)為工單派發(fā)準(zhǔn)確影響他們的滿意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個焦點(diǎn)與1個短軸端點(diǎn)為頂點(diǎn)的三角形的面積為2

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過橢圓的右焦點(diǎn)F,且與橢圓交與A,B兩點(diǎn),以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,,.有以下結(jié)論:①三棱錐的表面積為;②三棱錐的內(nèi)切球的半徑;③點(diǎn)到平面的距離為;其中正確的是(

A.①②B.②③C.①③D.①②③

查看答案和解析>>

同步練習(xí)冊答案