【題目】某市勞動部門堅持就業(yè)優(yōu)先,釆取多項措施加快發(fā)展新興產業(yè),服務經濟,帶來大量就業(yè)崗位,據政府工作報告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個百分點,處于近20年來的最低水平.
(1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:
失業(yè) | 就業(yè) | 合計 | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計 | 5 | 95 | 100 |
根據聯(lián)表判斷是否有99%的把握認為失業(yè)與性別有關?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(2)調查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營經濟,大型國企對就業(yè)支撐作用不斷增強,其崗位比例為2∶5∶3,現(xiàn)要抽取一個樣本容量為50的樣本,則這三種崗位應該各抽取多少人?
科目:高中數學 來源: 題型:
【題目】2019年11月份,全國工業(yè)生產者出廠價格同比下降,環(huán)比下降某企業(yè)在了解市場動態(tài)之后,決定根據市場動態(tài)及時作出相應調整,并結合企業(yè)自身的情況作出相應的出廠價格,該企業(yè)統(tǒng)計了2019年1~10月份產品的生產數量(單位:萬件)以及銷售總額(單位:十萬元)之間的關系如下表:
2.08 | 2.12 | 2.19 | 2.28 | 2.36 | 2.48 | 2.59 | 2.68 | 2.80 | 2.87 | |
4.25 | 4.37 | 4.40 | 4.55 | 4.64 | 4.75 | 4.92 | 5.03 | 5.14 | 5.26 |
(1)計算的值;
(2)計算相關系數,并通過的大小說明與之間的相關程度;
(3)求與的線性回歸方程,并推測當產量為3.2萬件時銷售額為多少.(該問中運算結果保留兩位小數)
附:回歸直線方程中的斜率和截距的最小二乘估計公式分別為,;
相關系數.
參考數據:,,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數據用該組區(qū)間中點作代表);
(2)由直方圖可認為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了提高學生的身體素質,某校高一、高二兩個年級共336名學生同時參與了“我運動,我健康,我快樂”的跳繩、踢毽等系列體育健身活動.為了了解學生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學生中分別抽取7名和5名學生進行測試.下表是高二年級的5名學生的測試數據(單位:個/分鐘):
(1)求高一、高二兩個年級各有多少人?
(2)設某學生跳繩個/分鐘,踢毽個/分鐘.當,且時,稱該學生為“運動達人”.
①從高二年級的學生中任選一人,試估計該學生為“運動達人”的概率;
②從高二年級抽出的上述5名學生中,隨機抽取3人,求抽取的3名學生中為“運動達人”的人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的短軸長為,離心率為.
(1)求橢圓的標準方程;
(2)直線平行于直線,且與橢圓交于兩個不同的點,若為鈍角,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,且,圓,點,是圓上的動點,線段的垂直平分線交直線于點,點的軌跡為曲線.
(1)討論曲線的形狀,并求其方程;
(2)若,且面積的最大值為,直線過點且不垂直于坐標軸,與曲線交于,點關于軸的對稱點為.求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,
已知曲線的參數方程為(為參數),曲線的極坐標方程為.曲線的圖象與軸、軸分別交于兩點.
(1)判斷兩點與曲線的位置關系;
(2)點是曲線上異于兩點的動點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數),直線的參數方程為(為參數),設直線與的交點為,當變化時點的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,點為曲線上的動點,求點到直線的距離的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com