設(shè)橢圓E:+=1(a>b>0)過(guò),M(2,),N(,1)兩點(diǎn),求橢圓E的方程.
【答案】分析:將M,N兩點(diǎn)坐標(biāo)代入橢圓方程,解方程得出a2、b2即可.
解答:解:因?yàn)闄E圓E:+=1(a,b>0)過(guò)M(2,),N(,1)兩點(diǎn),
所以解得所以
橢圓E的方程為
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程,一般采取待定系數(shù)法法求方程,要注意求a2、b2即可.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩焦點(diǎn)為F1、F2,若橢圓上存在一點(diǎn)Q,使∠F1QF2=120°,橢圓離心率e的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓E:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)過(guò),M(2,數(shù)學(xué)公式),N(數(shù)學(xué)公式,1)兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省杭州二中高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓E:-=1(a>b>0)的離心率為,已知A(a,0),B(0,-b),且原點(diǎn)O到直線AB的距離為
(Ⅰ)  求橢圓E的方程;
(Ⅱ)已知過(guò)點(diǎn)M(1,0)的直線交橢圓E于C,D兩點(diǎn),若存在動(dòng)點(diǎn)N,使得直線NC,NM,ND的斜率依次成等差數(shù)列,試確定點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓E:+= 1(a > b),A、B是長(zhǎng)軸的端點(diǎn),C為短軸的一個(gè)端點(diǎn),F(xiàn)1、F2是焦點(diǎn),記∠ACB = α,∠F1CF2 = β,若α = 2 β,則橢圓E的離心率e應(yīng)當(dāng)滿足的方程是            。

查看答案和解析>>

同步練習(xí)冊(cè)答案