【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量=( , ﹣1),=(cosA,sinA).若⊥ , 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
A.,
B.,
C.,
D.,
【答案】C
【解析】解:根據(jù)題意,⊥ , 可得=0,
即cosA﹣sinA=0,
∴A= ,
又由正弦定理可得,sinAcosB+sinBcosA=sin2C,
sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,
C= , ∴B= .
故選C.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系和三角函數(shù)的積化和差公式,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直;三角函數(shù)的積化和差公式:;即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對(duì)任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿(mǎn)足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時(shí),x﹣3y的最大值為( )
A.10
B.8
C.6
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面四邊形是矩形,平面,分別是的中點(diǎn),.
(1)求證:平面;
(2)求二面角的大小;
(3)若,求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線(xiàn)所示. 是等腰梯形, 米, (在的延長(zhǎng)線(xiàn)上, 為銳角). 圓與都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)
且斜率為的直線(xiàn)與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于的直線(xiàn)與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(3,0),B(0,3)C(cosα,sinα),O為原點(diǎn).
(1)若∥ , 求tanα的值;
(2)若 , 求sin2α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬(wàn)元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為元,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.
(1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);
(2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助元.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(1)求證:平面ABC1⊥平面A1ACC1;
(2)設(shè)D是線(xiàn)段BB1的中點(diǎn),求三棱錐D﹣ABC1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿(mǎn)分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com