【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為元,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.
(1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);
(2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助元.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))
【答案】(1),;(2).
【解析】
試題分析:(1)實(shí)驗(yàn)開始后,每天的試驗(yàn)費(fèi)用構(gòu)成公差為,首項(xiàng)為的等差數(shù)列,通過等差數(shù)列的求和公式計(jì)算出這天所投入的試驗(yàn)費(fèi)用,然后便可求出的值,再利用等差數(shù)列的求和公式求出天內(nèi)總計(jì)的試驗(yàn)費(fèi)用,然后再求出每天的平均試驗(yàn)費(fèi)用,利用基本不等式便可求出平均每天耗資最少時(shí)試驗(yàn)的天數(shù);(2)先求出實(shí)際耗資的連續(xù)函數(shù),,討論和的大小關(guān)系即可解得的取值范圍為.
試題解析:(1)依題意得,試驗(yàn)開始后,每天的試驗(yàn)費(fèi)用構(gòu)成等差數(shù)列,公差為,首項(xiàng)為,
∴試驗(yàn)30天共花費(fèi)試驗(yàn)費(fèi)用為,
解得,.............................2分
設(shè)試驗(yàn)天,平均每天耗資為元,則
..................4分
,
當(dāng)且僅當(dāng),即時(shí)取等號(hào),
綜上得,,試驗(yàn)天數(shù)為100天..................................6分
(2)設(shè)平均每天實(shí)際耗資為元,則
...........8分
當(dāng),即時(shí),
,因?yàn)?/span>,
所以,,.......................10分
當(dāng),即時(shí),當(dāng)時(shí),取最小值,
且,
綜上得,的取值范圍為....................12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合P和Q中隨機(jī)取一個(gè)數(shù)a和b得到數(shù)對(duì)。
(1)若,,求函數(shù)在內(nèi)是偶函數(shù)的概率;
(2)若,,求函數(shù)有零點(diǎn)的概率;
(3)若,,求函數(shù)在區(qū)間上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、分別是橢圓的左頂點(diǎn)、右焦點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),當(dāng)軸時(shí), .
(1)求橢圓的離心率;
(2)若橢圓存在點(diǎn),使得四邊形是平行四邊形(點(diǎn)在第一象限),求直線與的斜率之積;
(3)記圓為橢圓的“關(guān)聯(lián)圓”. 若,過點(diǎn)作橢圓的“關(guān)聯(lián)圓”的兩條切線,切點(diǎn)為、,直線的橫、縱截距分別為、,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量=( , ﹣1),=(cosA,sinA).若⊥ , 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
A.,
B.,
C.,
D.,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,△BCD是正三角形,AB=AD=1,∠BAD=θ.
(Ⅰ)將四邊形ABCD的面積S表示成關(guān)于θ的函數(shù);
(Ⅱ)求S的最大值及此時(shí)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù), ).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若僅有一個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,則當(dāng)時(shí),討論單調(diào)性;
(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列為等比數(shù)列, ,公比,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè), ,求使的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com