【題目】在直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知點的極坐標為,直線的極坐標方程為,且點在直線上.
(1)求的值及直線的直角坐標方程;
(2)圓的極坐標方程為,試判斷直線與圓的位置關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率.
(1)求的方程;
(2)設(shè)直線經(jīng)過點且與相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點到經(jīng)過兩點,的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,且過點,橢圓的離心率為,點為拋物線與橢圓的一個公共點,且.
(1)求橢圓的方程;
(2)過橢圓內(nèi)一點的直線的斜率為,且與橢圓交于兩點,設(shè)直線,(為坐標原點)的斜率分別為,,若對任意,存在實數(shù),使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且過點.過點的直線交橢圓于, 兩點, 為橢圓的左頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求面積的最大值,并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線.
(1)求直線所過定點A的坐標;
(2)求直線被圓C所截得的弦長最短時直線的方程及最短弦長;
(3)已知點M(-3,4),在直線MC上(C為圓心),存在定點N(異于點M),滿足:對于圓C上任一點P,都有為一常數(shù), 試求所有滿足條件的點N的坐標及該常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個數(shù)列從第二項起,后一項與前一項的和相等且為同一常數(shù),這樣的數(shù)列叫“等和數(shù)列”,這個常數(shù)叫公和.給出下列命題:
①“等和數(shù)列”一定是常數(shù)數(shù)列;
②如果一個數(shù)列既是等差數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列;
③如果一個數(shù)列既是等比數(shù)列又是“等和數(shù)列”,則這個數(shù)列一定是常數(shù)列;
④數(shù)列是“等和數(shù)列”且公和,則其前項之和;
其中,正確的命題為__________.(請?zhí)畛鏊姓_命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生參加4門學(xué)科的學(xué)業(yè)水平測試,每門得等級的概率都是,該學(xué)生各學(xué)科等級成績彼此獨立.規(guī)定:有一門學(xué)科獲等級加1分,有兩門學(xué)科獲等級加2分,有三門學(xué)科獲等級加3分,四門學(xué)科全獲等級則加5分,記表示該生的加分數(shù), 表示該生獲等級的學(xué)科門數(shù)與未獲等級學(xué)科門數(shù)的差的絕對值.
(1)求的數(shù)學(xué)期望;
(2)求的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com