【題目】某工廠有一個容量為300噸的水塔,每天從早上6時起到晚上10時止供應(yīng)該廠的生產(chǎn)和生活用水,已知該廠生活用水為每小時10噸,工業(yè)用水量W()與時間t(小時,且規(guī)定早上6t=0)的函數(shù)關(guān)系為:W=100.水塔的進(jìn)水量分為10級,第一級每小時進(jìn)水10噸,以后每提高一級,每小時進(jìn)水量就增加10噸.若某天水塔原有水100噸,在開始供水的同時打開進(jìn)水管.

(1)若進(jìn)水量選擇為2級,試問:水塔中水的剩余量何時開始低于10噸?

(2)如何選擇進(jìn)水量,既能始終保證該廠的用水(水塔中水不空)又不會使水溢出?

【答案】(1)從7時起,水塔中水的剩余量何時開始低于10噸.

(2)進(jìn)水量應(yīng)選為第4

【解析】

由已知條件計(jì)算當(dāng)進(jìn)水量選擇為2級時,水塔中水的剩余量化簡為,然后計(jì)算出結(jié)果

結(jié)合題意得,分別計(jì)算出結(jié)果

(1)當(dāng)時,由,且

所以,

所以從7時起,水塔中水的剩余量何時開始低于10噸.

(2)根據(jù)題意,進(jìn)水x級,所以

由左邊得,

當(dāng)時,有最大值.所以

由右邊得+1,

當(dāng)時,+1有最小值,

所以

綜合上述,進(jìn)水量應(yīng)選為第4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinxcosx.

1)求函數(shù)fx)的最小正周期及單調(diào)遞減區(qū)間:

2)將fx)的圖象向左平移個單位后得到函數(shù)gx)的圖象,若方程gx)=m在區(qū)間[0]上有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,求不等式的解集;

2若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,其離心率,點(diǎn)P為橢圓上的一個動點(diǎn),面積的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若A,B,C,D是橢圓上不重合的四個點(diǎn),ACBD相交于點(diǎn),,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的年平均維修費(fèi)用(萬元)(即維修費(fèi)用之和除以使用年限),有如下的統(tǒng)計(jì)資料:

使用年限

2

3

4

5

6

維修費(fèi)用

2.2

3.8

5.5

6.5

7.0

(1)畫出散點(diǎn)圖;

(2)求關(guān)于的線性回歸方程;

(3)估計(jì)使用年限為10年時所支出的年平均維修費(fèi)用是多少?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動,利用列聯(lián)表,由計(jì)算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)

B. 99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”

C. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別有關(guān)”

D. 在犯錯誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,底面為平行四邊形,,.

(1)求的長;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照國家質(zhì)量標(biāo)準(zhǔn):某種工業(yè)產(chǎn)品的質(zhì)量指標(biāo)值落在[100,120)內(nèi),則為合格品,否則為不合格品.某企業(yè)有甲乙兩套設(shè)備生產(chǎn)這種產(chǎn)品,為了檢測這兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本對規(guī)定的質(zhì)量指標(biāo)值進(jìn)行檢測.表1是甲套設(shè)備的樣本頻數(shù)分布表,圖1是乙套設(shè)備的樣本頻率分布直方圖.

質(zhì)量指標(biāo)值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

4

19

20

5

1

表1:甲套設(shè)備的樣本頻數(shù)分布表

(1)將頻率視為概率,若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中合格品約有多少件?

(2)填寫下面2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為這種產(chǎn)品的質(zhì)量指標(biāo)值與甲乙兩套設(shè)備的選擇有關(guān):

甲套設(shè)備

乙套設(shè)備

合計(jì)

合格品

不合格品

合計(jì)

(3)根據(jù)表和圖,對甲、乙兩套設(shè)備的優(yōu)劣進(jìn)行比較.參考公式及數(shù)據(jù):x2=

P(Х2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

同步練習(xí)冊答案