【題目】已知:①函數(shù);
②向量,,且ω>0,;
③函數(shù)的圖象經(jīng)過點
請在上述三個條件中任選一個,補充在下面問題中,并解答.
已知 ,且函數(shù)f(x)的圖象相鄰兩條對稱軸之間的距離為.
(1)若,且,求f(θ)的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.
【答案】(1)(2)單調(diào)遞減區(qū)間為,
【解析】
選擇①②③中的任意一個,利用三角恒等變換,以及向量數(shù)量積運算,根據(jù)三角函數(shù)性質(zhì)求得.
(1)根據(jù),以及其范圍,求得,代值計算即可得到;
(2)先求得在上的單調(diào)減區(qū)間,與取交集即可求得結(jié)果.
方案一:選條件①
因為,
,
,
又,所以ω=1,所以,
方案二:選條件②
因為,,
所以.
又,所以ω=1,所以.
方案三:選條件③
由題意可知,,所以ω=1,所以.
又因為函數(shù)f(x)圖象經(jīng)過點,所以.
因為,所以,所以.
(1)因為,,所以.
所以.
(2)由,
得,
令k=0,得,令k=1,得,
所以函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水利部門擬在黃河沿岸修建一所水庫,為大致了解甲、乙兩地的降水情況,隨機選取汛期月份中的一周,將這一周內(nèi)每日的降水量數(shù)據(jù)進(jìn)行統(tǒng)計(單位:),制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地本周的平均降水量低于乙地本周的平均降水量;
②甲地本周的中位降水量高于乙地本周的平均降水量;
③甲地本周的降水量眾數(shù)大于乙地本周的降水量的中位數(shù);
④甲地本周降水量的標(biāo)準(zhǔn)差大于乙地本周降水量的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的不恰當(dāng)?shù)慕y(tǒng)計結(jié)論的編號為( )
A.①③B.②④C.①④D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《朗讀者》以精美的文字,最平實的情感讀出文字背后的價值,感染了眾多聽眾,中央電視臺在2018年推出了《朗讀者第二季》,電視臺節(jié)目組要從2018名觀眾中抽取50名幸運觀眾.先用簡單隨機抽樣從2018人中剔除18人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2018人中,每個人被抽取的可能性 ( )
A. 都相等,且為B. 都相等,且為C. 均不相等D. 不全相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)令,是否存在實數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由.
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面中兩條直線l和n相交于O,對于平面上任意一點M,若p,q分別是M到直線l和n的距離,則稱有序非負(fù)實數(shù)對(p,q)是點M的“距離坐標(biāo)”.則下列說法正確的( )
A.若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有一個
B.若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個
C.若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個
D.若p=q,則點M的軌跡是一條過O點的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).下列命題:( )
①函數(shù)的圖象關(guān)于原點對稱; ②函數(shù)是周期函數(shù);
③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是
(A)①③ (B)②③ (C)①④ (D)②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點,是它們的一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為( )
A. 3B. 2C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,E,F分別為A1C1和BC的中點,M,N分別為A1B和A1C的中點.求證:
(1)MN∥平面ABC;
(2)EF∥平面AA1B1B.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com