【題目】已知橢圓C: =1(a>b>0)過點A(﹣ , ),離心率為 ,點F1 , F2分別為其左右焦點.
(1)求橢圓C的標準方程;
(2)若y2=4x上存在兩個點M,N,橢圓上有兩個點P,Q滿足,M,N,F(xiàn)2三點共線,P,Q,F(xiàn)2三點共線,且PQ⊥MN.求四邊形PMQN面積的最小值.

【答案】
(1)解:由題意得: ,a2﹣b2=c2,得b=c,

因為橢圓過點A(﹣ ),

+ =1,

解得c=1,所以a2=2,

所以橢圓C方程為


(2)解:當直線MN斜率不存在時,直線PQ的斜率為0,

易得 ,

當直線MN斜率存在時,設直線方程為:y=k(x﹣1)(k≠0)

與y2=4x聯(lián)立得k2x2﹣(2k2+4)x+k2=0,

令M(x1,y1),N(x2,y2),則 ,x1x2=1,

|MN|= .即有 ,

∵PQ⊥MN,∴直線PQ的方程為:y=﹣ (x﹣1),

將直線與橢圓聯(lián)立得,(k2+2)x2﹣4x+2﹣2k2=0,

令P(x3,y3),Q(x4,y4),x3+x4= ,x3x4= ,

由弦長公式|PQ|=

代入計算可得 ,

∴四邊形PMQN的面積S= |MN||PQ|=

令1+k2=t,(t>1),

上式 = ,

所以 .最小值為


【解析】(1)由橢圓的離心率公式和點滿足橢圓方程及a,b,c的關系,解方程,即可得到橢圓方程;(2)討論直線MN的斜率不存在,求得弦長,求得四邊形的面積;當直線MN斜率存在時,設直線方程為:y=k(x﹣1)(k≠0)聯(lián)立拋物線方程和橢圓方程,運用韋達定理和弦長公式,以及四邊形的面積公式,計算即可得到最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C (ab>0)的離心率為,且過點(1,).過橢圓C的左頂點A作直線交橢圓C于另一點P,交直線lxm(ma)于點M.已知點B(1,0),直線PBl于點N

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MB是線段PN的垂直平分線,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )經過點,且兩焦點與短軸的一個端點的連線構成等腰直角三角形.

(1)求橢圓的方程;

(2)動直線 )交橢圓、兩點,試問:在坐標平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:
①定義在R上的函數(shù)f(x)滿足f(﹣2)=f(2),則f(x)不是奇函數(shù)
②定義在R上的函數(shù)f(x)恒滿足f(﹣x)=|f(x)|,則f(x)一定是偶函數(shù)
③一個函數(shù)的解析式為y=x2 , 它的值域為{0,1,4},這樣的不同函數(shù)共有9個
④設函數(shù)f(x)=lnx,則對于定義域中的任意x1 , x2(x1≠x2),恒有
其中為真命題的序號有(填上所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且過點.

(1)求橢圓的方程;

(2)若不經過點的直線交于兩點,且直線與直線的斜率之和為,證明:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國家規(guī)定個人稿費納稅辦法是:不超過800元的不納稅;超過800元而不超過4 000元的按超過800元部分的14%納稅;超過4 000元的按全部稿酬的11%納稅.已知某人出版一本書,共納稅420元,這個人應得稿費(扣稅前)為(
A.2800元
B.3000元
C.3800元
D.3818元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(﹣2)=0,當x>0時,xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

同步練習冊答案