在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線上.
(1)求a的值及直線的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線與圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線的方程為(為參數(shù)),曲線的極坐標(biāo)方程為,若曲線與相交于、兩點(diǎn).
(1)求的值;
(2)求點(diǎn)到、兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,動(dòng)點(diǎn)P(ρ,θ)運(yùn)動(dòng)時(shí),ρ與成反比,動(dòng)點(diǎn)P的軌跡經(jīng)過(guò)點(diǎn)(2,0).
(1)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(2)將(1)中極坐標(biāo)方程化為直角坐標(biāo)方程,并指出軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫(xiě)出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別是、,直線與曲線相交于、兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長(zhǎng)度單位,圓C的參數(shù)方程為(為參數(shù)),點(diǎn)Q的極坐標(biāo)為。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)若直線過(guò)點(diǎn)Q且與圓C交于M,N兩點(diǎn),求當(dāng)弦MN的長(zhǎng)度為最小時(shí),直線的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:(為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長(zhǎng)度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:,
(1)求曲線C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1和C2上的任意一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;
(2)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn),直線l的極坐標(biāo)方程為.
(1)判斷點(diǎn)P與直線l的位置關(guān)系,說(shuō)明理由;
(2)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)為A、B,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+sinθ)=2的距離為d.求d的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com