【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大;
(2)若b=2,求△ABC面積的最大值.
【答案】
(1)解:由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,
∴sinB+cosB=0,即tanB=﹣1,
又0<B<π,∴B= .
(2)解:由余弦定理,可得 = ≥2ac+ ac,
∴ac≤ =2(2﹣ ),當(dāng)且僅當(dāng)a=c時取等號.
∴S△ABC= sinB≤ = ﹣1,
故△ABC面積的最大值為: ﹣1.
【解析】(1)由bsinA+acosB=0及其正弦定理可得:sinBsinA+sinAcosB=0,sinA≠0,化簡即可得出.(2)由余弦定理,可得 ,再利用基本不等式的性質(zhì)、三角形面積計算公式即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的頂點分別為A(﹣1,3),B(3,2),C(1,0)
(1)求BC邊上高的長度;
(2)若直線l過點C,且在l上不存在到A,B兩點的距離相等的點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對任意正整數(shù) .
(1)求數(shù)列{an}的通項公式;
(2)是否存在實數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請求出實數(shù)μ及公比q的值,若不存在,請說明理由;
(3)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=﹣x與直線y=k(x+1)相交于A(x1 , y1),B(x2 , y2)兩點,O為坐標(biāo)原點.
(1)求y1y2的值;
(2)求證:OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com