【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=n2﹣4n,數(shù)列{bn}中,b1= 對(duì)任意正整數(shù) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)μ,使得數(shù)列{3nbn+μ}是等比數(shù)列?若存在,請(qǐng)求出實(shí)數(shù)μ及公比q的值,若不存在,請(qǐng)說明理由;
(3)求證: .
【答案】
(1)解:當(dāng)n=1時(shí),a1=S1=﹣3,
當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1=n2﹣4n﹣(n﹣1)2+4(n﹣1),
即an=2n﹣5,
n=1也適合,所以an=2n﹣5.
(2)解:法一:
假設(shè)存在實(shí)數(shù)μ,使數(shù)列{3nbn+μ}是等比數(shù)列,且公比為q.
因?yàn)閷?duì)任意正整數(shù) , ,
可令n=2,3,得 b2= ,b3=﹣ .
因?yàn)閧3nbn+μ}是等比數(shù)列,所以 = ,解得 μ=﹣
從而 = = =﹣3 (n≥2)
所以存在實(shí)數(shù)μ=﹣ ,公比為q=﹣3.
法二:因?yàn)閷?duì)任意正整數(shù) .所以 ,
設(shè)3nbn+μ=﹣3(3n﹣1bn﹣1+μ),則﹣4μ=1,
所以存在 ,且公比 .
(3)解:因?yàn)閍2=﹣1,a3=1,所以 , ,
所以 ,即 ,
于是b1+b2+…+bn= + + +… = = =
當(dāng)是奇數(shù)時(shí):b1+b2+…+bn=,關(guān)于遞增,
得 ≤b1+b2+…+bn< .
當(dāng)是偶數(shù)時(shí):b1+b2+…+bn= ,關(guān)于遞增,
得 ≤b1+b2+…+bn .
綜上, ≤b1+b2+…+bn .
【解析】(1)當(dāng)n=1時(shí),a1=S1=﹣3,當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1,可得an.(2)法一:假設(shè)存在實(shí)數(shù)μ,使數(shù)列{3nbn+μ}是等比數(shù)列,且公比為q.因?yàn)閷?duì)任意正整數(shù) , ,可令n=2,3,得 b2,b3.根據(jù){3nbn+μ}是等比數(shù)列,可得: = ,解得 μ,代入可得 =﹣3 (n≥2)即可證明.
法二:因?yàn)閷?duì)任意正整數(shù) .所以 ,設(shè)3nbn+μ=﹣3(3n﹣1bn﹣1+μ),可得﹣4μ=1,即可證明.(3)由a2=﹣1,a3=1,可得 , ,可得 ,即 ,利用等比數(shù)列的求和公式即可得出.對(duì)n分類討論,利用數(shù)列的單調(diào)性即可證明.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):10.1,9.8,10,x,10.2的平均數(shù)為10,則該組數(shù)據(jù)的方差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n對(duì)任意n∈N*都成立,則實(shí)數(shù)λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1的左右焦點(diǎn)分別為F1 , F2 , 則在橢圓C上滿足∠F1PF2= 的點(diǎn)P的個(gè)數(shù)有( )
A.0個(gè)
B.1個(gè)
C.2 個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA+acosB=0.
(1)求角B的大;
(2)若b=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對(duì)于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有 <0?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣a,g(x)=a|x|,a∈R.
(1)設(shè)F(x)=f(x)﹣g(x). ①若a= ,求函數(shù)y=F(x)的零點(diǎn);
②若函數(shù)y=F(x)存在零點(diǎn),求a的取值范圍.
(2)設(shè)h(x)=f(x)+g(x),x∈[﹣2,2],若對(duì)任意x1 , x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)、G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com