【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

甲班

10

b

乙班

c

30

總計105

已知在全部105人中隨機抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(

參考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列聯(lián)表中c的值為30,b的值為35

B.列聯(lián)表中c的值為15,b的值為50

C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認為成績與班級有關系

D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認為成績與班級有關系

【答案】C

【解析】

根據(jù)題意可求出成績優(yōu)秀的學生數(shù)是,所以成績非優(yōu)秀的學生數(shù)是,即可求出的值,判斷出的真假,再根據(jù)列聯(lián)表求出K2,即可由獨立性檢驗的基本思想判斷出的真假.

由題意知,成績優(yōu)秀的學生數(shù)是,成績非優(yōu)秀的學生數(shù)是,所以c20,b45,選項A,B錯誤;根據(jù)列聯(lián)表中的數(shù)據(jù),得到≈6.109>3.841,因此有95%的把握認為成績與班級有關系,選項C正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司欲生產一款迎春工藝品回饋消費者,工藝品的平面設計如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點為半圈上一點(異于,),點在線段上,且滿足.已知,,設.

1)為了使工藝禮品達到最佳觀賞效果,需滿足,且達到最大.為何值時,工藝禮品達到最佳觀賞效果;

2)為了工藝禮品達到最佳穩(wěn)定性便于收藏,需滿足,且達到最大.為何值時,取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在定義域上的單調性;

(2)令函數(shù),是自然對數(shù)的底數(shù),若函數(shù)有且只有一個零點,判斷的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)若f(1)<0,試判斷函數(shù)單調性并求使不等式恒成立的的取值范圍;

(2)若, 上的最小值為-2,求m的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù),且曲線在坐標原點處的切線相同.

1的最小值;

2時,恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Wab0)的離心率,其右頂點A2,0),直線l過點B1,0)且與橢圓交于C,D兩點.

)求橢圓W的標準方程;

)判斷點A與以CD為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家A1,A2A33個歐洲國家B1,B2,B3中選擇2個國家去旅游.

(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;

(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

(1)求的單調區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018831日,十三屆全國人大常委會第五次會議表決通過了關于修改個人所得稅法的決定,這是我國個人所得稅法自1980年出臺以來第七次大修為了讓納稅人盡早享受減稅紅利,在過渡期對納稅個人按照下表計算個人所得稅,值得注意的是起征點變?yōu)?/span>5000元,即如表中“全月應納稅所得額”是納稅者的月薪金收入減去5000元后的余額.

級數(shù)

全月應納稅所得額

稅率

1

不超過3000元的部分

2

超過3000元至12000元的部分

3

超過12000元至25000元的部分

某企業(yè)員工今年10月份的月工資為15000元,則應繳納的個人所得稅為______

查看答案和解析>>

同步練習冊答案