【題目】2018831日,十三屆全國人大常委會第五次會議表決通過了關(guān)于修改個人所得稅法的決定,這是我國個人所得稅法自1980年出臺以來第七次大修為了讓納稅人盡早享受減稅紅利,在過渡期對納稅個人按照下表計(jì)算個人所得稅,值得注意的是起征點(diǎn)變?yōu)?/span>5000元,即如表中“全月應(yīng)納稅所得額”是納稅者的月薪金收入減去5000元后的余額.

級數(shù)

全月應(yīng)納稅所得額

稅率

1

不超過3000元的部分

2

超過3000元至12000元的部分

3

超過12000元至25000元的部分

某企業(yè)員工今年10月份的月工資為15000元,則應(yīng)繳納的個人所得稅為______

【答案】790

【解析】

結(jié)合題意可得企業(yè)員工今年10月份的月工資為15000元,個人所得稅屬于2級,可得應(yīng)繳納的個人所得稅為,計(jì)算即可.

結(jié)合題意可得企業(yè)員工今年10月份的月工資為15000元,個人所得稅屬于2級,
則應(yīng)繳納的個人所得稅為


故答案為:790

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

b

乙班

c

30

總計(jì)105

已知在全部105人中隨機(jī)抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(

參考公式:

附表:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

A.列聯(lián)表中c的值為30b的值為35

B.列聯(lián)表中c的值為15,b的值為50

C.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,能認(rèn)為成績與班級有關(guān)系

D.根據(jù)列聯(lián)表中的數(shù)據(jù),若按95%的可靠性要求,不能認(rèn)為成績與班級有關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某森林公園有一直角梯形區(qū)域ABCD,其四條邊均為道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.現(xiàn)甲、乙兩管理員同時從地出發(fā)勻速前往D地,甲的路線是AD,速度為6千米/小時,乙的路線是ABCD,速度為v千米/小時.

(1)若甲、乙兩管理員到達(dá)D的時間相差不超過15分鐘,求乙的速度v的取值范圍;

(2)已知對講機(jī)有效通話的最大距離是5千米.若乙先到達(dá)D,且乙從AD的過程中始終能用對講機(jī)與甲保持有效通話,求乙的速度v的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期為π,且圖象上的一個最低點(diǎn)為M( ).

(1)求f(x)的解析式及單調(diào)遞增區(qū)間;

(2)當(dāng)x∈[0,]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多邊形PABCD中,,,M是線段PD上的一點(diǎn),且,若將沿AD折起,得到幾何體

證明:平面AMC

,且平面平面ABCD,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)、為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

1)求雙曲線的方程;

2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

3)過圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把兩個全等的正三棱錐的底面粘在一起,在所得的六面體中,所有二面角相等,而頂點(diǎn)可分成兩類:在第一類中,每一個頂點(diǎn)發(fā)出三條棱;而在第二類頂點(diǎn)中,每一個頂點(diǎn)發(fā)出四條棱。試求連結(jié)兩個第一類頂點(diǎn)的線段長與連結(jié)兩個第二類頂點(diǎn)的線段長之比。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中a為常數(shù).

當(dāng),求a的值;

當(dāng)時,關(guān)于x的不等式恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).其中表示的導(dǎo)函數(shù)的取值.

(1)的值及函數(shù)的單調(diào)區(qū)間;

(2)的定義域內(nèi)恒成立,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案