|
|
在空間直角坐標(biāo)系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S1,S2,S3分別表示三棱錐D-ABC在xOy,yOz,zOx坐標(biāo)平面上的正投影圖形的面積,則
|
[ ] |
A. |
S1=S2=S3
|
B. |
S1=S2且S3≠S1
|
C. |
S1=S3且S3≠S2
|
D. |
S2=S3且S1≠S3
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
復(fù)數(shù)(3+2i)i等于
|
[ ] |
A. |
-2-3i
|
B. |
-2+3i
|
C. |
2-3i
|
D. |
2+3i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知矩陣A的逆矩陣.
(Ⅰ)求矩陣A;
(Ⅱ)求矩陣A-1的特征值以及屬于每個(gè)特征值的一個(gè)特征向量.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知{an}是等差數(shù)列,滿(mǎn)足a1=3,a4=12,數(shù)列{bn}滿(mǎn)足b1=4,b4=20,且{bn-an}是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是
|
[ ] |
A. |
y=
|
B. |
y=(x-1)2
|
C. |
y=2-x
|
D. |
y=log0.5(x+1)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
若等差數(shù)列{an}滿(mǎn)足a7+a8+a9>0,a7+a10<0,則當(dāng)n=________時(shí){an}的前n項(xiàng)和最大.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率.
(2)設(shè)O為原點(diǎn),若點(diǎn)A在橢圓C上,點(diǎn)B在直線(xiàn)y=2上,且OA⊥OB,求直線(xiàn)AB與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別是a,b,c,且b=3,c=1,△ABC的面積為,求cosA與a的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
若實(shí)數(shù)x,y滿(mǎn)足則2x+y-1的最大值為_(kāi)_______.
|
|
|
查看答案和解析>>