【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對(duì)此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請(qǐng)根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;
(III)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)誤差均不超過(guò)2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗(yàn),(II)中的回歸方程是否可靠?
【答案】(1) ;(2) ;(3)詳見(jiàn)解析.
【解析】試題分析:(1)由列舉法得出從5天中任選2天的基本事件, 選出的二天種子發(fā)芽數(shù)均不小于25的基本事件,根據(jù)古典概型得出概率;(2)先求出平均數(shù)和代入公式,求出線(xiàn)性回歸方程;(3)將和代入方程,與(II)中的回歸方程進(jìn)行比較,得出結(jié)論.
試題解析:(Ⅰ)從5天中任選2天,共有10個(gè)基本事件:(12日,13日),(12日,14日),(12日,15日),
(12日,16日),(13日,14日),(13日,15日),(13日,16日),(14日,15日),(14日,16日),(15日,16日).
選出的二天種子發(fā)芽數(shù)均不小于25共有3個(gè)基本事件:(13日,14日),(13日,15日),(14日,15日).
∴事件“均不小于25”的概率為.
(Ⅱ). 5. =2.
∴.
∴關(guān)于的線(xiàn)性回歸方程為.
(Ⅲ)當(dāng)時(shí), .
當(dāng)時(shí), .
∴回歸方程是可靠的.
點(diǎn)睛:具有以下兩個(gè)特點(diǎn)的概率模型稱(chēng)為古典概率模型,簡(jiǎn)稱(chēng)古典概型:(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè).(2)每個(gè)基本事件出現(xiàn)的可能性相等.如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有n個(gè),而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一個(gè)基本事件的概率都是;如果某個(gè)事件A包括的結(jié)果有m個(gè),那么事件A的概率P(A)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用簡(jiǎn)單隨機(jī)抽樣從某小區(qū)抽取100戶(hù)居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50到350度之間,頻率分布直方圖如圖所示.在這些用戶(hù)中,用電量落在區(qū)間[150,250]內(nèi)的戶(hù)數(shù)為( )
A.46
B.48
C.50
D.52
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+ax﹣ + ,在區(qū)間[0,1]上的最大值是2,求函數(shù)f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題。
(1)求橢圓 的長(zhǎng)軸和短軸的長(zhǎng)、離心率、焦點(diǎn)和頂點(diǎn)的坐標(biāo).
(2)求焦點(diǎn)在y軸上,焦距是4,且經(jīng)過(guò)點(diǎn)M(3,2)的橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個(gè)元素m、n,即滿(mǎn)足m∈A,n∈B,記為(m,n), (Ⅰ)若m∈Z,n∈Z,寫(xiě)出所有的(m,n)的取值情況,并求事件“方程 所對(duì)應(yīng)的曲線(xiàn)表示焦點(diǎn)在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程 所對(duì)應(yīng)的曲線(xiàn)表示焦點(diǎn)在x軸上的橢圓,且長(zhǎng)軸長(zhǎng)大于短軸長(zhǎng)的 倍”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,左、右頂點(diǎn)分別為為直徑的圓O過(guò)橢圓E的上頂點(diǎn)D,直線(xiàn)DB與圓O相交得到的弦長(zhǎng)為.設(shè)點(diǎn),連接PA交橢圓于點(diǎn)C.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明 PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求VB﹣EFD .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com