在數(shù)列{an}中,,試猜想這個(gè)數(shù)列的通項(xiàng)公式。
解析試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/74/7/sod4l1.png" style="vertical-align:middle;" />,所以,。
考點(diǎn):本題主要考查數(shù)列的遞推公式,等差數(shù)列的通項(xiàng)公式。
點(diǎn)評(píng):簡(jiǎn)單題,考察數(shù)列要從多方面入手,如本題中,通過(guò)研究的特征,利用等差數(shù)列的知識(shí),使問(wèn)題得解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)同時(shí)滿(mǎn)足:
①不等式的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在,使得不等式成立.
數(shù)列的通項(xiàng)公式為.
(1)求函數(shù)的表達(dá)式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為,已知, .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列滿(mǎn)足:,數(shù)列滿(mǎn)足.
(1)若是等差數(shù)列,且求的值及的通項(xiàng)公式;
(2)若是公比為的等比數(shù)列,問(wèn)是否存在正實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
(3)若是等比數(shù)列,求的前項(xiàng)和(用n,表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列首項(xiàng),公差為,且數(shù)列是公比為4的等比數(shù)列,
(1)求;
(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(3)求數(shù)列的前項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,且, .
(1)求的值;
(2)猜想的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)二次方程,有兩根和,且滿(mǎn)足,
(1)試用表示; (2)證明是等比數(shù)列;
(3)設(shè),,為的前n項(xiàng)和,證明,()。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com