【題目】已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且 . ,則直線FH與直線EG(
A.平行
B.相交
C.異面
D.垂直

【答案】B
【解析】解::∵四邊形ABCD是空間四邊形,E、F分別是AB、AD的中點(diǎn), ∴EF為三角形ABD的中位線
∴EF∥BD且EF= BD
又∵ . ,
∴△CHG∽△CDB,且HG∥BD,HG= BD
∴在四邊形EFHG中,EF∥HG
即E,F(xiàn),G,H四點(diǎn)共面,且EF≠HG,
∴四邊形EFGH是梯形,
∴直線FH與直線EG相交,
故選B.
【考點(diǎn)精析】掌握異面直線的判定是解答本題的根本,需要知道過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線和平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線.(不在任何一個(gè)平面內(nèi)的兩條直線).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓C1 和圓C2:x2+y2=b2 , 已知圓C2將橢圓C1的長(zhǎng)軸三等分,且圓C2的面積為π.橢圓C1的下頂點(diǎn)為E,過(guò)坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線l與圓C2相交于點(diǎn)A,B,直線EA,EB與橢圓C1的另一個(gè)交點(diǎn)分別是點(diǎn)P,M.
(I)求橢圓C1的方程;
(Ⅱ)求△EPM面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

3,對(duì)于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)沙市物價(jià)監(jiān)督部門為調(diào)研某公司新開(kāi)發(fā)上市的一種產(chǎn)品銷售價(jià)格的合理性,對(duì)某公司的該產(chǎn)品的銷量與價(jià)格進(jìn)行了統(tǒng)計(jì)分析,得到如下數(shù)據(jù)和散點(diǎn)圖:

定價(jià)

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù): ,

(1)根據(jù)散點(diǎn)圖判斷, 哪一對(duì)具有的線性相關(guān)性較強(qiáng)(給出判斷即可,不必說(shuō)明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價(jià)為多少元/ 時(shí),年銷售額的預(yù)報(bào)值最大?

附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 ,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系.

(Ⅰ)求曲線 的極坐標(biāo)方程;

(Ⅱ)曲線 為參數(shù), , )分別交 , 兩點(diǎn),當(dāng)取何值時(shí), 取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體的底面是邊長(zhǎng)為2的正方形, 底面 ,且

(Ⅰ)記線段的中點(diǎn)為,在平面內(nèi)過(guò)點(diǎn)作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

(Ⅱ)求直線與平面所成角的正弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α、β∈(0,π),且tanα、tanβ是方程x2﹣5x+6=0的兩根.
①求α+β的值.
②求cos(α﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某社區(qū)工會(huì)對(duì)當(dāng)?shù)仄髽I(yè)工人月收入情況進(jìn)行一次抽樣調(diào)查后畫出的頻率分布直方圖,其中第二組月收入在[1.5,2)千元的頻數(shù)為300,則此次抽樣的樣本容量為(

A.1000
B.2000
C.3000
D.4000

查看答案和解析>>

同步練習(xí)冊(cè)答案