已知△ABC中,b2=ac
(1)求證:0<B≤
π
3

(2)求y=
1+sin2B
sinB+cosB
的值域.
分析:(1)先利用余弦定理表示出cosB,再結(jié)合b2=ac求出cosB的范圍即可證明結(jié)論;
(2)先對(duì)所求的函數(shù)進(jìn)行化簡(jiǎn),再結(jié)合第一問的結(jié)論以及輔助角公式的運(yùn)用即可求出y=
1+sin2B
sinB+cosB
的值域.
解答:解:(1)證明:因?yàn)閏osB=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2
,
0<B<π
∴0<B≤
π
3

(2)∵y=
1+sin2B
sinB+cosB
=
(sinB+cosB)2
sinB+cosB
=sinB+cosB=
2
sin(B+
π
4

又∵0<B≤
π
3

π
4
<B+
π
4
12

2
2
<sin(B+
π
4
)≤1
∴1<y
2

y=
1+sin2B
sinB+cosB
的值域?yàn)椋?,
2
].
點(diǎn)評(píng):本題主要考查余弦定理的運(yùn)用以及輔助角公式的運(yùn)用.一般在三角形中求角的范圍問題時(shí),比較常用余弦定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知△ABC中,AB=c,AC=b,BC=a,若a2+b2+c2=ab+bc+ca,則△ABC的形狀是
等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC中,b2=ac
(1)求證:數(shù)學(xué)公式
(2)求數(shù)學(xué)公式的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,(a2+b2)sin(A-B)=(a2-b2)sin(A+B),試判斷該三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省連云港市海州高級(jí)中學(xué)高考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題

已知△ABC中,b2=ac
(1)求證:
(2)求的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案