【題目】已知橢圓的離心率為,且經(jīng)過點,兩個焦點分別為.

1)求橢圓的方程;

2)過的直線與橢圓相交于兩點,若的內(nèi)切圓半徑為,求以為圓心且與直線相切的圓的方程.

【答案】1;(2.

【解析】

試題解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,反映在代數(shù)上,就是直線與橢圓方程聯(lián)立的方程組有無實數(shù)解及實數(shù)解的個數(shù)的問題,它體現(xiàn)了方程思想的應(yīng)用,當(dāng)直線與橢圓相交時,要注意判別式大于零這一隱含條件,它可以用來檢驗所求參數(shù)的值是否有意義,也可通過該不等式來求參數(shù)的范圍.對直線與橢圓的位置關(guān)系的考查往往結(jié)合平面向量進行求解,與向量相結(jié)合的題目,大都與共線、垂直和夾角有關(guān),若能轉(zhuǎn)化為向量的坐標(biāo)運算往往更容易實現(xiàn)解題功能,所以在復(fù)習(xí)過程中要格外重視.

試題解析:()由,所以,

將點的坐標(biāo)代入橢圓方程得

故所求橢圓方程為;

)設(shè)直線的方程為,代入橢圓方程得,顯然判別式大于0恒成立,設(shè),的內(nèi)切圓半徑為,則有

,

所以

所以解得,

因為所求圓與直線相切,所以半徑=,

所以所求圓的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,沿對角線折起,使得點在平面上的射影恰好落在邊上.

(1)求證:平面平面;

(2)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,過的直線交拋物線于點,當(dāng)直線的傾斜角是時, 的中垂線交軸于點.

(1)求的值;

(2)以為直徑的圓交軸于點,記劣弧的長度為,當(dāng)直線點旋轉(zhuǎn)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年的流感來得要比往年更猛烈一些據(jù)四川電視臺“新聞現(xiàn)場”播報,近日四川省人民醫(yī)院一天的最高接診量超過了一萬四千人,成都市婦女兒童中心醫(yī)院接診量每天都在九千人次以上這些浩浩蕩蕩的看病大軍中,有不少人都是因為感冒來的醫(yī)院某課外興趣小組趁著寒假假期空閑,欲研究晝夜溫差大小與患感冒人數(shù)之間的關(guān)系,他們分別到成都市氣象局與跳傘塔社區(qū)醫(yī)院抄錄了去年16月每月20日的晝夜溫差情況與患感冒就診的人數(shù),得到如下資料:

日期

120

220

320

420

520

620

晝夜溫差

10

11

13

12

8

6

就診人數(shù)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2月至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點.,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式.

(1)當(dāng)時,解不等式;

(2)如果不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎活動,抽獎箱里放有2個紅球,1個黃球和1個藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機一次性取2個小球,每位顧客每次抽完獎后將球放回抽獎箱.活動另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎機會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎機會;

③若取得的2個小球都是紅球,則該顧客中得一等獎,獎金是一個10元的紅包;

④若取得的2個小球都不是紅球,則該顧客中得二等獎,獎金是一個5元的紅包;

⑤若取得的2個小球只有1個紅球,則該顧客中得三等獎,獎金是一個2元的紅包.

抽獎活動的組織者記錄了該超市前20位顧客的購物消費數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎機會的人數(shù)與抽獎總次數(shù)(假定每位獲得抽獎機會的顧客都會去抽獎);

(2)求這20位顧客中獎得抽獎機會的顧客的購物消費數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(3)分別求在一次抽獎中獲得紅包獎金10元,5元,2元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

同步練習(xí)冊答案