(08年湖北卷理)(本小題滿分12分)
水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為
V(t)=
(Ⅰ)該水庫的蓄求量小于50的時期稱為枯水期.以i-1<t<t表示第1月份(i=1,2,…,12),同一年內(nèi)哪幾個月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫的最大蓄水量(取e=2.7計算)
解:(1)①當(dāng)時,
化簡得,
解得.
②當(dāng)時,,
化簡得,
解得.
綜上得,,或.
故知枯水期為1月,2月,3月,4月,11月,12月共6個月。
(2)由(1)知,的最大值只能在(4,10)內(nèi)內(nèi)達到。
由,
令,解得(舍去)。
當(dāng)變化時,與的變化情況如下表:
(4,8) | 8 | (8,10) | |
+ | 0 | - | |
極大值 |
由上表,在時取得最大值(億立方米)。
故知一年內(nèi)該水庫的最大蓄水量是108.32億立方米。
【試題解析】第(1)問實際上就是解不等式,當(dāng)然要注意問題的轉(zhuǎn)化;第(2)問求最值要先求導(dǎo)再通過單調(diào)性求最值。
【高考考點】本題考查函數(shù)、導(dǎo)數(shù)和不等式等基本知識,考查用導(dǎo)數(shù)求最值和綜合運用數(shù)學(xué)知識解決實際問題的能力。
【易錯提醒】不等式解出后在寫最后的結(jié)果時出錯;求導(dǎo)求錯。
【備考提示】解不等式是高中數(shù)學(xué)的重要內(nèi)容,不等式問題貫穿高中數(shù)學(xué)的始終;導(dǎo)數(shù)是新增加的內(nèi)容,是處理許多問題的有利工具,是高考的必考內(nèi)容,考生一定要認(rèn)真掌握。
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷理)(本小題滿分13分)
如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,
∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)設(shè)過點D的直線l與曲線C相交于不同的兩點E、F.
若△OEF的面積不小于2,求直線l斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
如圖,在直三棱柱中,平面側(cè)面
(Ⅰ)求證:
(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷理)(本小題滿分12分)
袋中有20個大小相同的球,其中記上0號的有10個,記上n號的有n個(n=1,2,3,4).現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號.
(Ⅰ)求ξ的分布列,期望和方差;
(Ⅱ)若η=aξ-b,Eη=1,Dη=11,試求a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com