【題目】(本小題滿分12分)
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交元()的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為元()時,一年的銷售量為萬件.
(Ⅰ)求分公司一年的利潤(萬元)與每件產(chǎn)品的售價的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價為多少元時,分公司一年的利潤最大,并求出的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論:
①當(dāng)a為任意實數(shù)時,直線(a﹣1)x﹣y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標(biāo)準(zhǔn)方程是;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x﹣y=0,則雙曲線的標(biāo)準(zhǔn)方程是;
③拋物線的準(zhǔn)線方程為.
④已知雙曲線,其離心率e∈(1,2),則m的取值范圍是(﹣12,0).
其中正確命題的序號是___________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 ,過點的直線的參數(shù)方程為(為參數(shù)),與交于兩點
(1) 求的直角坐標(biāo)方程和的普通方程;
(2) 若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx).
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:
(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 過點,離心率為.
(1)求橢圓的方程;
(2), 是過點且互相垂直的兩條直線,其中交圓于, 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的頂點為坐標(biāo)原點,焦點在軸的正半軸上,點是拋物線上的一點,以為圓心,2為半徑的圓與軸相切,切點為.
(I)求拋物線的標(biāo)準(zhǔn)方程:
(Ⅱ)設(shè)直線在軸上的截距為6,且與拋物線交于,兩點,連接并延長交拋物線的準(zhǔn)線于點,當(dāng)直線恰與拋物線相切時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
附:的觀測值
(1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)在犯錯誤的概率不超過0.01的前提下是否可認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
1當(dāng)時,求不等式的解集;
2若關(guān)于x的不等式有實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關(guān),通過隨機調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關(guān)”
B. 有99%以上的把握認為“愛好該項運動與性別有關(guān)”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關(guān)”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com