已知正項(xiàng)數(shù)列的前項(xiàng)和為,的等比中項(xiàng).
(1)求證:數(shù)列是等差數(shù)列;
(2)若,且,求數(shù)列的通項(xiàng)公式;
(3)在(2)的條件下,若,求數(shù)列的前項(xiàng)和.

(1)詳見解析;(2);(3).

解析試題分析:(1)利用關(guān)系找出數(shù)列的遞推關(guān)系,可證明數(shù)列為等差數(shù)列;(2)由(1)可求出,由,可變形得出為等比數(shù)列,進(jìn)一步求出其通項(xiàng)公式;(3)根據(jù)數(shù)列的結(jié)構(gòu)特點(diǎn)(等差乘等比型)可用錯(cuò)位相減法求和.證明數(shù)列為等差數(shù)列或等比數(shù)列,應(yīng)緊扣定義,通過對(duì)所給條件變形,得到遞推關(guān)系,而等差乘等比型數(shù)列的求和最常用的就是錯(cuò)位相減法,使用這個(gè)方法在計(jì)算上要有耐心和細(xì)心,注意各項(xiàng)的符號(hào),防止出錯(cuò).
試題解析:(1)          1分
當(dāng)時(shí),,∴                    2分
當(dāng)時(shí),
               3分
      4分
  ∴
∴數(shù)列是等差數(shù)列                          5分
(2)由,而,          7分
∴數(shù)列是以2為公比,4為首項(xiàng)的等比數(shù)列

                                       9分
(3)                               10分
  ①
兩邊同乘以 ②
①②得
 
              14分
考點(diǎn):等差數(shù)列、等比數(shù)列、錯(cuò)位相減法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為
(1)求證:數(shù)列是等比數(shù)列;
(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足,其中N*.
(Ⅰ)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于N*恒成立,若存在,求出的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足遞推式:
(Ⅰ)若,求的遞推關(guān)系(用表示);
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,
(1)求的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)同時(shí)滿足:①不等式 的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立 設(shè)數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱為這個(gè)數(shù)列的變號(hào)數(shù),令為正整數(shù)),求數(shù)列的變號(hào)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若數(shù)列的前項(xiàng)和為,對(duì)任意正整數(shù)都有,記
(1)求,的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)若求證:對(duì)任意

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為,數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖像上.
(1)求的解析式;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),點(diǎn)都在直線上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若設(shè)求數(shù)列項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案