【題目】已知 ,a∈R.
(1)求f(x)的解析式;
(2)解關(guān)于x的方程f(x)=(a﹣1)4x
(3)設(shè)h(x)=2﹣xf(x), 時(shí),對(duì)任意x1 , x2∈[﹣1,1]總有 成立,求a的取值范圍.

【答案】
(1)解:令log2x=t即x=2t,則f(t)=a(2t2﹣22t+1﹣a,

即f(x)=a22x﹣22x+1﹣a,x∈R


(2)解:由f(x)=(a﹣1)4x化簡(jiǎn)得:22x﹣22x+1﹣a=0即(2x﹣1)2=a,

當(dāng)a<0時(shí),方程無(wú)解,

當(dāng)a≥0時(shí),解得

若0≤a<1,則

若a≥1,則


(3)解:對(duì)任意x1,x2∈[﹣1,1]總有 成立,等價(jià)于

當(dāng)x∈[﹣1,1]時(shí), , ,

令2x=t,則

,

①當(dāng)a≥1時(shí), 單調(diào)遞增,

此時(shí) , , (舍),

②當(dāng) 時(shí), 單調(diào)遞增

此時(shí) , ,

③當(dāng) 時(shí),

上單調(diào)遞減,在 上單調(diào)遞增

,

,

綜上:


【解析】1、由題意可得22x﹣22x+1﹣a=0即(2x﹣1)2=a,對(duì)a 分情況討論可得當(dāng)0≤a<1,則 ,當(dāng)a≥1,
2、由題意可得,分情況討論。①當(dāng)a≥1時(shí),a ≤ (舍) ②當(dāng) ≤ a < 1 時(shí),a= ③當(dāng) ≤ a < 時(shí), a ≤ ,∴ ≤ a < .
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的零點(diǎn),需要了解函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(ax﹣1)( a>0,a≠1 )
(1)討論函數(shù)f(x)的定義域;
(2)當(dāng)a>1時(shí),解關(guān)于x的不等式:f(x)<f(1);
(3)當(dāng)a=2時(shí),不等式f(x)﹣log2(1+2x)>m對(duì)任意實(shí)數(shù)x∈[1,3]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則它的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣2|(x+1).
(1)將f(x)寫(xiě)成分段函數(shù),并作出函數(shù)f(x)的圖象;
(2)根據(jù)函數(shù)的圖象寫(xiě)出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,東方百貨超市的一種商品在過(guò)去的一個(gè)月內(nèi)(以30天計(jì)算),銷售價(jià)格f(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足 ,銷售量g(t)與時(shí)間(天)的函數(shù)關(guān)系近似滿足g(t)=
(1)試寫(xiě)出該商品的日銷售金額W(t)關(guān)于時(shí)間t(1≤t≤30,t∈N)的函數(shù)表達(dá)式;
(2)求該商品的日銷售金額W(t)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量 , ,且
(1)求角B的大。
(2)若sinAsinC=sin2B,求a﹣c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當(dāng)a=3時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)設(shè) ,且a>1,討論函數(shù)g(x)的單調(diào)性和極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線 與直線y=k(x-2)+4有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S值為( )

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案