【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時間n1≤n≤30nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n) 圖象中的點位于斜率為 5 和-3 的兩條直線上,兩直線交點的橫坐標為m,且第m天日銷售量最大.

(Ⅰ)f(n) 的表達式,及前m天的銷售總數(shù);

(Ⅱ)按以往經(jīng)驗,當該專賣店銷售某款服裝的總數(shù)超過 400 件時,市面上會流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時,該款服裝將不再流行.試預測本款服裝在市面上流行的天數(shù)是否會超過 10 天?請說明理由.

【答案】(Ⅰ) ,(nN*),354 件;(Ⅱ) 不超過,理由見解析.

【解析】

(I) 根據(jù)題意,設

f(1) = 2,∴ 5 +a= 2,a= 3

5m+a= 3m+b,b= 8m+a= 8m3

f(m) = 57m= 12

12 天的銷售總量為 5 (1 + 2 + 3 + … + 12)3×12 = 354件.

(II) 13 天的銷售量為f(13) = 3×13 + 93 =" 54" 件,

354 + 54 > 400 件,

從第 14 天開始銷售總量超過 400 件,即開始流行.

設第x 天的日銷售量開始低于 30 (12 <x≤ 30)

f(x) = 3x+ 93 < 30 ,

解得x> 21

從第22天,日銷售量開始低于 30 件,21-13=8

∴該服裝流行的時間不超過10天.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處切線的斜率為1.

(1)求的值;

(2)設,若對任意,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)對某市工薪階層關(guān)于樓市限購令的態(tài)度進行調(diào)查,隨機抽調(diào)了50,他們月收入的頻數(shù)分布及對樓市限購令贊成人數(shù)如表:

月收入(單位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

()由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表并問是否有99%的把握認為月收入以5500為分界點樓市限購令的態(tài)度有差異;

月收入低于55百元的人數(shù)

月收入不低于55百元的人數(shù)

合計

贊成

不贊成

合計

()若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機抽取6人進行追蹤調(diào)查,并給予其中3紅包獎勵,求收到紅包獎勵的3人中至少有1人收入在[15,25)的概率.

參考公式:K2,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點.若曲線上存在兩點,使為正三角形,則稱型曲線.給定下列三條曲線:

;

;

其中型曲線的個數(shù)是

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.是自然對數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,都是正三角形, E、F分別是ACBC的中點,且PDABD.

(Ⅰ)證明:直線⊥平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,都是正三角形, E、F分別是AC、BC的中點,且PDABD.

(Ⅰ)證明:直線⊥平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的通項公式為,其中,.

(1)試寫出一組、的值,使得數(shù)列中的各項均為正數(shù).

(2),,數(shù)列滿足,且對任意的(),均有,寫出所有滿足條件的的值.

(3),數(shù)列滿足,其前項和為,且使(、,)有且僅有組,、、中有至少個連續(xù)項的值相等,其它項的值均不相等,求、的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1的側(cè)面AA1B1B是菱形,側(cè)面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1,AA1=2AC=2OAA1的中點.

1)求證:OCBC1;

2)求點C1到平面ABC的距離.

查看答案和解析>>

同步練習冊答案