【題目】設(shè)有限集合A={a1 , a2 , ..,an},則a1+a2+…+an叫做集合A的和,記作SA , 若集合P={x|x=2n﹣1,n∈N* , n≤4},集合P的含有3個元素的全體子集分別記為P1 , P2 , …,Pk , 則P1+P2+…+Pk=

【答案】48
【解析】解:由題意:集合P={x|x=2n﹣1,n∈N* , n≤4}, 那么:集合P={1,3,5,7},集合P的含有3個元素的全體子集為{1,3,5},{1,3,7},{1,5,7},{3,5,7},
由新定義可得:P1=9,P2=11,P3=13,P4=15
則P1+P2+P3+P4=48.
故答案為:48.
由題意:集合P={x|x=2n﹣1,n∈N* , n≤4},求出集合P的含有3個元素的全體子集,求全體子集之和即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若集合{a,b,c,d}={1,2,3,4},且下列四個關(guān)系:
①a=1;②b≠1;③c=2;④d≠4有且只有一個是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個數(shù)是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是 R上的增函數(shù),A(0,﹣1),B(3,1)是其圖像上的兩點,那么|f(x)|<1的解集是(
A.(﹣3,0)
B.(0,3)
C.(﹣∞,﹣1]∪[3,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=loga|x+1|在(﹣1,0)上是增函數(shù),則f(x)在(﹣∞,﹣1)上是(
A.函數(shù)值由負到正且為增函數(shù)
B.函數(shù)值恒為正且為減函數(shù)
C.函數(shù)值由正到負且為減函數(shù)
D.沒有單調(diào)性

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從0,1,2,3,4中選取三個不同的數(shù)字組成一個三位數(shù),其中奇數(shù)有(
A.18個
B.27個
C.36個
D.60個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】馬路上喲編號1,2,3,…,10共10盞燈,現(xiàn)要關(guān)掉其中的四盞,但不能關(guān)掉相鄰的二盞或三盞,也不能關(guān)掉兩端的兩盞,則滿足條件的關(guān)燈方案有種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)y=log4(x2﹣2x+5)有以下4個結(jié)論:其中正確的有 ①定義域為R; ②遞增區(qū)間為[1,+∞);
③最小值為1; ④圖像恒在x軸的下方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】錢大姐常說“便宜沒好貨”,她這句話的意思是:“不便宜”是“好貨”的(
A.充分條件
B.必要條件
C.充分必要條件
D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列x,3x+3,6x+6,…的第四項等于(
A.﹣24
B.0
C.12
D.24

查看答案和解析>>

同步練習冊答案