設ω>0,若函數(shù)f(x)=2sinωx在[-
π
6
,
π
5
]
上單調(diào)遞增,則ω的取值范圍是( 。
分析:由三角函數(shù)的增區(qū)間的公式,算出f(x)距離原點最近的單調(diào)增區(qū)間為[-
π
π
],由此結合題意建立關于ω的不等式,解之可得ω的取值范圍.
解答:解:∵函數(shù)f(x)=2sinωx的單調(diào)增區(qū)間滿足-
π
2
+2kπ≤ωx≤
π
2
+2kπ,(k∈Z)
∴取k=0,得到距離原點最近的單調(diào)增區(qū)間為[-
π
,
π
]
∵在[-
π
6
π
5
]
上f(x)單調(diào)遞增
∴-
π
6
≥-
π
π
5
π
,解之得0<ω≤
5
2

故選:C
點評:本題給出三角函數(shù)式,在已知函數(shù)的增區(qū)間情況下求參數(shù)的取值范圍.著重考查了三角函數(shù)的單調(diào)區(qū)間公式和不等式的解法等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=mx3+3x2-3x,m∈R.
(Ⅰ)若函數(shù)f(x)在x=-1處取得極值,試求m的值,并求f(x)在點M(1,f(1))處的切線方程;
(Ⅱ)設m<0,若函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b是實數(shù),函數(shù)f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的導函數(shù),若f′(x)g′(x)≥0在區(qū)間I上恒成立,則稱f(x)和g(x)在區(qū)間I上單調(diào)性一致
(1)設a>0,若函數(shù)f(x)和g(x)在區(qū)間[-1,+∞)上單調(diào)性一致,求實數(shù)b的取值范圍;
(2)設a<0,且a≠b,若函數(shù)f(x)和g(x)在以a,b為端點的開區(qū)間上單調(diào)性一致,求|a-b|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|x|•(x+a)(a∈R)是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)設b>0,若函數(shù)f(x)在區(qū)間[-b,b]上最大值與最小值的差為b,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=mx3+3x2-3x,m∈R.
(1)若函數(shù)f(x)在x=-1處取得極值,求m的值;
(2)設m<0,若函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|x-2m|,常數(shù)m∈R.
(1)設m=0.求證:函數(shù)f(x)遞增;
(2)設m=-1.求關于x的方程f(f(x))=0的解的個數(shù);
(3)設m>0.若函數(shù)f(x)在區(qū)間[0,1]上的最大值為m2,求正實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案