精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的離心率為,且過點,橢圓的右頂點為,點的坐標為

1)求橢圓的方程;

2)已知縱坐標不同的兩點,為橢圓上的兩個點,且,,三點共線,線段的中點為,求直線的斜率的取值范圍.

【答案】1;(2.

【解析】

1)由題意結合橢圓的性質可得,求得、即可得解;

2)由題意設直線方程為,點,,,直線的斜率為,聯立方程結合韋達定理可表示出點的坐標,進而可得,結合基本不等式即可得解.

1)∵橢圓的離心率為,且過點,

,解得,,

∴橢圓的方程為;

2)依題意知直線過點,且斜率不為0,

故可設其方程為,

,消去,,

設點,,,直線的斜率為,

,∴,∴,

又點的坐標為,∴,

時,;

時,,

,當且僅當時,等號成立,

,∴,

;

綜上所述,直線的斜率的取值范圍是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為慶祝中華人民共和國成立70周年,2019101日晚,金水橋南,百里長街成為舞臺,3290名聯歡群眾演員跟著音樂的旋律,用手中不時變幻色彩的光影屏,流動著拼組出五星紅旗、祖國萬歲、長城等各式圖案和文字.光影瀲滟間,以《紅旗頌》《我們走在大路上》《在希望的田野上》《領航新時代》四個章節(jié),展現出中華民族從站起來、富起來到強起來的偉大飛躍.在每名演員的手中都有一塊光影屏,每塊屏有1024顆燈珠,若每個燈珠的開、關各表示一個信息,則每塊屏可以表示出不同圖案的個數為(

A.2048B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC在內角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.

)求B;

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數分布表

周跑量(km/周)

人數

100

120

130

180

220

150

60

30

10

(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:

注:請先用鉛筆畫,確定后再用黑色水筆描黑

(2)根據以上圖表數據計算得樣本的平均數為,試求樣本的中位數(保留一位小數),并用平均數、中位數等數字特征估計該市跑步愛好者周跑量的分布特點

(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

類別

休閑跑者

核心跑者

精英跑者

裝備價格(單位:元)

2500

4000

4500

根據以上數據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解疫情期間哈一中高三學生的心理需求,更好的開展高考前的心理健康教育工作,心理老師設計了兩個問題,第一個問題是你出生的月份是奇數嗎?;第二個問題是你是否需要心理疏導?”.讓被調查者在保密的情況下擲一個均勻的骰子,其他人不知道擲骰子的結果,要求:當出現1點或2點時,回答第一個問題;否則回答第二個問題,由于其他人不知道他回答的是哪一個問題,因此,當他回答時,你也無法知道他是否有心理問題,這種調查既保護了他的隱私,也能反映真實情況,可以從調查結果中得到需要的估計,若調查的900名學生中有156人回答,由此可估計我校高三需要心理疏導的學生所占的比例約為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱柱中,平面,.

1)求證:平面;

2)若是棱的中點,在棱上是否存在一點,使得//平面?若存在,請確定點的位置:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,等腰梯形中,,,,中點,以為折痕把折起,使點到達點的位置(平面.

1)證明:;

2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案