【題目】△ABC在內(nèi)角A、B、C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面積的最大值.
【答案】(Ⅰ)B=(Ⅱ)
【解析】
(1)∵a=bcosC+csinB
∴由正弦定理知sinA=sinBcosC+sinCsinB ①
在三角形ABC中,A=-(B+C)
∴sinA=sin(B+C)=sinBcosC+cosBsinC ②
由①和②得sinBsinC=cosBsinC
而C∈(0,),∴sinC≠0,∴sinB=cosB
又B(0,),∴B=
(2)△ABC的面積S=acsinB=ac
由已知及余弦定理得
4=a2+c2-2accosB ③
而a2+c2≥2ac ④
聯(lián)立③和④得ac≤,當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立.
因此△ABC面積的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長(zhǎng)為.
(1)設(shè)總造價(jià)(元)表示為長(zhǎng)度的函數(shù);
(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,證明:當(dāng)時(shí),;當(dāng)時(shí),;
(2)若是的極大值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其圖像相鄰的兩個(gè)對(duì)稱中心之間的距離為,且有一條對(duì)稱軸為直線,則下列判斷正確的是 ( )
A. 函數(shù)的最小正周期為
B. 函數(shù)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)在區(qū)間上單調(diào)遞增
D. 函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為(t為參數(shù))曲線C的參數(shù)方程為,為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A、B兩點(diǎn),求三角形PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
不支持 | 支持 | 合計(jì) | |
男性市民 | |||
女性市民 | |||
合計(jì) |
(1)根據(jù)已知數(shù)據(jù)把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否有的把握認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退體老人中隨機(jī)抽取人,求至多有位老師的概率.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長(zhǎng)度差為分;且“冬至”時(shí)日影長(zhǎng)度最大,為1350分;“夏至”時(shí)日影長(zhǎng)度最小,為160分則“立春”時(shí)日影長(zhǎng)度為
A. 分B. 分C. 分D. 分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù),,與在交點(diǎn)處的切線相互垂直.
(1)求的解析式;
(2)已知,若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com