【題目】已知函數(shù).

在其定義域上單調(diào)遞減,求的取值范圍;

存在兩個(gè)不同極值點(diǎn),且,求證.

【答案】(1)(2)見(jiàn)解析

【解析】

先對(duì)函數(shù)求導(dǎo),由在其定義域上單調(diào)遞減,得到恒成立,即恒成立,用導(dǎo)數(shù)的方法求出的最小值即可;

2)若存在兩個(gè)不同極值點(diǎn),且,欲證:,只需證:,即證,再根據(jù),得到,,再令,得到,設(shè),由導(dǎo)數(shù)方法研究其單調(diào)性即可得出結(jié)論.

解:(1)由于的定義域?yàn)?/span>,且,若在其定義域上單調(diào)遞減,則恒成立,即恒成立.

,

則隨著的變化,的變化如下表所示

-

0

+

極小值

所以.

所以

(2)若存在兩個(gè)不同極值點(diǎn),且

欲證:.

只需證:.

只需證:.

只需證:.

因?yàn)?/span>,,

所以,

所以

,則,則,

設(shè),則

可知函數(shù)上單調(diào)遞增

所以 .

所以成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)對(duì)A市居民手機(jī)內(nèi)安裝的“APP”(英文Application的縮寫(xiě),一般指手機(jī)軟件)的個(gè)數(shù)和用途進(jìn)行調(diào)研,在使用智能手機(jī)的居民中隨機(jī)抽取了100人,獲得了他們手機(jī)內(nèi)安裝APP的個(gè)數(shù),整理得到如圖所示頻率分布直方圖:

(Ⅰ)從A市隨機(jī)抽取一名使用智能手機(jī)的居民,試估計(jì)該居民手機(jī)內(nèi)安裝APP的個(gè)數(shù)不低于30的概率;

(Ⅱ)從A市隨機(jī)抽取3名使用智能手機(jī)的居民進(jìn)一步做調(diào)研,用X表示這3人中手機(jī)內(nèi)安裝APP的個(gè)數(shù)在[20,40)的人數(shù).

①求隨機(jī)變量X的分布列及數(shù)學(xué)期望;

②用Y1表示這3人中安裝APP個(gè)數(shù)低于20的人數(shù),用Y2表示這3人中手機(jī)內(nèi)安裝APP的個(gè)數(shù)不低于40的人數(shù).試比較EY1EY2的大小.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】六棱錐中,底面是正六邊形,底面,給出下列四個(gè)命題:

①線(xiàn)段的長(zhǎng)是點(diǎn)到線(xiàn)段的距離;

②異面直線(xiàn)所成角是

③線(xiàn)段的長(zhǎng)是直線(xiàn)與平面的距離;

是二面角平面角.

其中所有真命題的序號(hào)是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線(xiàn)的焦點(diǎn)為F,過(guò)F的動(dòng)直線(xiàn)lMN兩點(diǎn).

1)若l垂直于x軸,且線(xiàn)段MN的長(zhǎng)為1,求的方程;

(2)若,求線(xiàn)段MN的中點(diǎn)P的軌跡方程;

(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,馬路南邊有一小池塘,池塘岸長(zhǎng)40米,池塘的最遠(yuǎn)端的距離為400米,且池塘的邊界為拋物線(xiàn)型,現(xiàn)要在池塘的周邊建一個(gè)等腰梯形的環(huán)池塘小路,且均與小池塘岸線(xiàn)相切,記.

1)求小路的總長(zhǎng),用表示;

2)若在小路與小池塘之間(圖中陰影區(qū)域)鋪上草坪,求所需鋪草坪面積最小時(shí),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的圖象在點(diǎn)處的切線(xiàn)方程;

(Ⅱ)設(shè)函數(shù),討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(Ⅰ)求的普通方程和的直角坐標(biāo)方程;

(Ⅱ)過(guò)曲線(xiàn)上任一點(diǎn)作與夾角為45°的直線(xiàn),交于點(diǎn),求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)軸垂直的直線(xiàn)交橢圓兩點(diǎn),的面積為,橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線(xiàn)軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(常數(shù)),P是曲線(xiàn)C上的動(dòng)點(diǎn),M是曲線(xiàn)C的右頂點(diǎn),定點(diǎn)A的坐標(biāo)為.

1)若MA重合,求曲線(xiàn)C的焦距.

2)若,求的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案