已知函數(shù),.
(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值;
(3)若,求使的取值范圍.
(1)最小正周期為,單調(diào)增區(qū)間是;(2)最小值是,最大值是;(3).
解析試題分析:(1)將原函數(shù)化為,可得最小正周期與單調(diào)增區(qū)間;(2)利用正弦函數(shù)的取值可得;(3)由得出范圍,與求交集.
解:
2分
(1)函數(shù)的最小正周期為, 3分
令()得,
(),
所以函數(shù)的單調(diào)增區(qū)間是(). 4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/0/1efug3.png" style="vertical-align:middle;" />,所以,
所以.
所以.
所以.
所以函數(shù)在區(qū)間上的最小值是,最大值是. 7分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/7/bnbow1.png" style="vertical-align:middle;" />,所以.
由得,,
所以,
所以或,
所以或,
當(dāng)時(shí),使的取值范圍是. 9分
考點(diǎn):的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)(2011•重慶)設(shè)α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)滿(mǎn)足,求函數(shù)f(x)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2014·孝感模擬)已知函數(shù)f(x)=sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=時(shí)取得最大值的最小正整數(shù).
(1)求ω的值.
(2)設(shè)△ABC的三邊長(zhǎng)a,b,c滿(mǎn)足b2=ac,且邊b所對(duì)的角θ的取值集合為M,當(dāng)x∈M時(shí),求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(其中>0,),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為.
(1)求的值;
(2)如果在區(qū)間的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的圖像經(jīng)過(guò)點(diǎn),,當(dāng)時(shí),恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
下圖是函數(shù))的一段圖像.
(1)寫(xiě)出此函數(shù)的解析式;
(2)求該函數(shù)的對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,角所對(duì)的邊分別為,且滿(mǎn)足.
(1)求角的大。
(2)求的最大值,并求取得最大值時(shí)角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com