【題目】在直角坐標(biāo)系中,直線(xiàn),圓.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程;

2)若直線(xiàn)的極坐標(biāo)方程為,設(shè)的交點(diǎn)為、,求.

【答案】1;(2.

【解析】

1)由可得出曲線(xiàn)的極坐標(biāo)方程;

2)解法一:求出直線(xiàn)的普通方程,利用點(diǎn)到直線(xiàn)的距離公式計(jì)算出圓的圓心到直線(xiàn)的距離,再利用勾股定理計(jì)算出;

解法二:設(shè)點(diǎn)的極坐標(biāo)分別為、,將圓的方程化為極坐標(biāo)方程,并將直線(xiàn)的方程與圓的極坐標(biāo)方程聯(lián)立,得出關(guān)于的二次方程,列出韋達(dá)定理,可得出,從而計(jì)算出.

1)由直線(xiàn),可得的極坐標(biāo)方程為

2)解法一:由直線(xiàn)的極坐標(biāo)方程為,

得直線(xiàn)的直角坐標(biāo)方程為,即.

的圓心坐標(biāo)為,半徑為,

則圓心到直線(xiàn)的距離,;

解法二:圓的普通方程為,

化為極坐標(biāo)方程得

設(shè)點(diǎn)、的極坐標(biāo)分別為、

將直線(xiàn)的極坐標(biāo)方程代入圓的極坐標(biāo)方程得,,

由韋達(dá)定理得,

因此,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)當(dāng)=-1時(shí),求的單調(diào)區(qū)間及值域;

(2)若在()上為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線(xiàn)的焦點(diǎn),為拋物線(xiàn)上三點(diǎn),且點(diǎn)在第一象限,直線(xiàn)經(jīng)過(guò)點(diǎn)與拋物線(xiàn)在點(diǎn)處的切線(xiàn)平行,點(diǎn)的中點(diǎn).

(1)證明:軸平行;

(2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓M=1a>b>c)的一個(gè)頂點(diǎn)坐標(biāo)為(01),焦距為2.若直線(xiàn)y=x+m與橢圓M有兩個(gè)不同的交點(diǎn)AB

I)求橢圓M的方程;

II)將表示為m的函數(shù),并求△OAB面積的最大值(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)對(duì)籃球運(yùn)動(dòng)員的籃球技能進(jìn)行統(tǒng)計(jì)研究,針對(duì)籃球運(yùn)動(dòng)員在投籃命中時(shí),運(yùn)動(dòng)員到籃筐中心的水平距離這項(xiàng)指標(biāo),對(duì)某運(yùn)動(dòng)員進(jìn)行了若干場(chǎng)次的統(tǒng)計(jì),依據(jù)統(tǒng)計(jì)結(jié)果繪制如下頻率分布直方圖:

(I)依據(jù)頻率分布直方圖估算該運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離的中位數(shù);

(II)在某場(chǎng)比賽中,考察他前4次投籃命中時(shí)到籃筐中心的水平距離的情況,并且規(guī)定:運(yùn)動(dòng)員投籃命中時(shí),他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1.用隨機(jī)變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,且的極值點(diǎn).

(Ⅰ) 的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);

(Ⅱ)恰有1解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某市工薪階層關(guān)于“樓市限購(gòu)政策”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽查了人,他們?cè)率杖?單位:百元)的頻數(shù)分布及對(duì)“樓市限購(gòu)政策”贊成人數(shù)如下表:

月收入(百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1))根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并回答是否有的把握認(rèn)為月收入以百元為分界點(diǎn)對(duì)“樓市限購(gòu)政策”的態(tài)度有差異?

月收入低于55百元人數(shù)

月收入不低于55百元人數(shù)

總計(jì)

贊成

不贊成

總計(jì)

(2)若從月收入在的被調(diào)查對(duì)象中隨機(jī)選取人進(jìn)行調(diào)查,求至少有一人贊成“樓市限購(gòu)政策”的概率.

(參考公式:,其中

參考值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為x米.

1)求底面積,并用含x的表達(dá)式表示池壁面積;

2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),直線(xiàn)的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線(xiàn)截直線(xiàn)所得線(xiàn)段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案