已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)的周期為π,且對一切x∈R,都有f(x)數(shù)學(xué)公式
(1)求函數(shù)f(x)的表達(dá)式; 
(2)若g(x)=f(數(shù)學(xué)公式),求函數(shù)g(x)的單調(diào)增區(qū)間.

解:(1)∵,又周期
∴ω=2
∵對一切x∈R,都有f(x)

得:
∴f(x)的解析式為
(2)∵
∴g(x)的增區(qū)間是函數(shù)y=sin的減區(qū)間
∴由得g(x)的增區(qū)間為(k∈Z)
(等價(jià)于).
分析:(1)利用輔助角公式化簡,通過周期求出ω,通過函數(shù)的最值,列出方程,求出函數(shù)的解析式即可.
(2)利用g(x)=f()求出函數(shù)的解析式,利用正弦函數(shù)的單調(diào)性,求出函數(shù)的單調(diào)區(qū)間即可.
點(diǎn)評:本題考查三角函數(shù)中的恒等變換應(yīng)用,兩角和與差的正弦函數(shù),二倍角的正弦,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0
,
②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊答案