【題目】在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系中,直線的極坐標方程為

1)求出線的極坐標方程及直線的直角坐標方程;

2)設點為曲線上的任意一點,求點到直線的距離最大值.

【答案】(1)曲線的極坐標方程,直線的直角坐標方程為(2)

【解析】

1)先求解的普通方程,然后將其轉化為極坐標方程;(2)設出點的參數(shù)形式,利用點到直線的距離公式以及三角函數(shù)有界性求解最大值.

(1)曲線的參數(shù)方程為為參數(shù)),

消去方程中的可得普通方程為,

代入上式得

所以曲線的極坐標方程

直線l的極坐標方程為,即,

,代人上式,得,

所以直線的直角坐標方程為

2)為曲線上任一點,

則點P到直線l的距離,

∴當時,的最大值

∴點P到直線l的距離的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題14分)

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD平面ABCD,PAPD,PA=PDE,F分別為AD,PB的中點.

(Ⅰ)求證:PEBC;

(Ⅱ)求證:平面PAB平面PCD

(Ⅲ)求證:EF平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱回歸數(shù)列

項和為的數(shù)列是否是回歸數(shù)列?并請說明理由.通項公式為的數(shù)列是否是回歸數(shù)列?并請說明理由;

)設是等差數(shù)列,首項,公差,若回歸數(shù)列,求的值.

)是否對任意的等差數(shù)列,總存在兩個回歸數(shù)列,使得成立,請給出你的結論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學習積極性高

18

7

25

學習積極性不高

6

19

25

合計

24

26

50

(1)如果隨機調查這個班的一名學生,那么抽到不積極參加班級工作且學習積極性不高的學生的概率是多少?

(2)若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取2名學生參加某項活動,問2名學生中有1名男生的概率是多少?

(3)學生的學習積極性與對待班級工作的態(tài)度是否有關系?請說明理由.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)fx)=|x2ax|aR),設gx)=fx+l)﹣fx.

1)若ygx)為奇函數(shù),求a的值:

2)設hx,x∈(0+∞

①若a≤0,證明:hx)>2

②若hx)的最小值為﹣1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調性

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內恒成立(e=2.718…為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓心在原點,半徑為R的圓交x軸正半軸于點A,P,Q是圓上的兩個動點,它們同時從點A出發(fā)沿圓周做勻速運動,點P沿逆時針方向每秒轉,點Q沿順時針方向每秒轉,試求PQ出發(fā)后第五次相遇時各自轉過的弧度數(shù)及各自走過的弧長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的值域為_________________

查看答案和解析>>

同步練習冊答案