【題目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},則A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

【答案】C
【解析】解:A={x||x+1|<1}={x|﹣2<x<0},B={x|y= ,y∈R}={x| }={x|x≤﹣1},
RB={x|x>﹣1},
即A∩RB={x|﹣1<x<0},
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a≥ 時(shí),設(shè)g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的兩個(gè)極值點(diǎn)x1 , x2(x1<x2)恰為φ(x)=lnx﹣cx2﹣bx的零點(diǎn),求y=(x1﹣x2)φ′( )的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=lgx4 , g(x)=4lgx
B. ,
C. ,g(x)=x+2
D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x3 x2+bx+c在x=1時(shí)取得極值,且當(dāng)x∈[﹣1,2]時(shí),f(x)<c2恒成立.
(1)求實(shí)數(shù)b的值;
(2)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某工廠有100名工人接受了生產(chǎn)1000臺(tái)某產(chǎn)品的總?cè)蝿?wù),每臺(tái)產(chǎn)品由9個(gè)甲型裝置和3個(gè)乙型裝置配套組成,每個(gè)工人每小時(shí)能加工完成1個(gè)甲型裝置或3個(gè)乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設(shè)加工甲型裝置的工人有x人,他們加工完甲型裝置所需時(shí)間為t1小時(shí),其余工人加工完乙型裝置所需時(shí)間為t2小時(shí).

設(shè)f(x)=t1t2

(Ⅰ)求f(x)的解析式,并寫出其定義域;

(Ⅱ)當(dāng)x等于多少時(shí),f(x)取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試討論函數(shù)f(x)= 在區(qū)間[0,1]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a∈R,若對(duì)任意的非零的實(shí)數(shù)x1 , 存在唯一的非零的實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最小值為(
A.
B.5
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)f(x)=(x﹣1)2+1定義在區(qū)間[t,t+1]上,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=(m2﹣5m+7)xm1(m∈R)為偶函數(shù).
(1)求 的值;
(2)若f(2a+1)=f(a),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案