3名男生和2名女生站成一排照相,男生甲不站在兩端,且女生不相鄰的站法共有( 。
分析:根據(jù)題意,分三種情況討論,①、當(dāng)甲在男生的中間時(shí),先分析其余的2名男生的站法情況,再用插空法可得女生的站法數(shù)目,由分步計(jì)數(shù)原理可得這種情況的站法數(shù)目;②、當(dāng)甲在男生的左邊時(shí),先分析其余的2名男生的站法情況,再分析可得必須有1名女生站在甲的左邊,剩余的女生在3個(gè)空位中選1個(gè),可得女生的站法數(shù)目,由分步計(jì)數(shù)原理可得這種情況的站法數(shù)目,③、當(dāng)甲在男生的右邊時(shí),同情況②可得其站法數(shù)目,由分類計(jì)數(shù)原理,將三種情況的站法數(shù)目相加可得答案.
解答:解:根據(jù)題意,分三種情況討論,
①、當(dāng)甲在男生的中間時(shí),其余的2名男生有2種情況,排好后的4個(gè)空位
女生不相鄰,男生排好后的4個(gè)空位都可以站,則女生有A42=12種站法,
此時(shí)有2×12=24種站法;
②、當(dāng)甲在男生的左邊時(shí),其余的2名男生有2種情況,
必須有1名女生站在甲的左邊,剩余的女生在3個(gè)空位中選1個(gè),女生有2×3=6種站法,
此時(shí)有2×6=12種站法;
③、當(dāng)甲在男生的右邊時(shí),同甲在左端時(shí),也有12種站法,
則共有24+12+12=48種站法;
故選B.
點(diǎn)評:本題考查分步計(jì)數(shù)原理的應(yīng)用,對于受到多個(gè)限制條件的排隊(duì)問題,要關(guān)鍵題意,確定合理的分類或分步解決方案,做到即滿足題意,又不重不漏.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、現(xiàn)有3名男生和2名女生站成一排,要求其中2名女生恰好站在兩端的不同的排法種數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有3名男生和2名女生站成一排,要求其中2名女生恰好站在兩端的不同的排法種數(shù)為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年云南省昆明市高三復(fù)習(xí)5月適應(yīng)性檢測數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

3名男生和2名女生站成一排照相,男生甲不站在兩端,且女生不相鄰的站法共有( )
A.60
B.48
C.30
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省益陽市沅江市高三質(zhì)量檢測數(shù)學(xué)試卷1(文科)(解析版) 題型:解答題

現(xiàn)有3名男生和2名女生站成一排,要求其中2名女生恰好站在兩端的不同的排法種數(shù)為   

查看答案和解析>>

同步練習(xí)冊答案