【題目】下列命題中正確命題的個數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4

【答案】C
【解析】解:①命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1≥0,故①錯誤;②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”的逆否命題為:“已知x,y∈R,若x=2且y=1,則x+y=3”是真命題,

∴命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題,故②正確;③設(shè)回歸直線方程為 =1.23x+a,把樣本點的中心(4,5)代入,得a=5﹣1.23×4=0.08,則回歸直線方程為 =1.23x+0.08,故③正確;④由m(m+3)﹣6m=0,得m=0或m=3,∴m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充分不必要條件,故④錯誤.

∴正確命題的個數(shù)是2.

故選:C.

直接寫出特稱命題的否定判斷①;寫出原命題的逆否命題并判斷真假判斷②;由已知結(jié)合回歸直線方程恒過樣本中心點求得a,得到回歸直線方程判斷③;由兩直線垂直與系數(shù)的關(guān)系列式求出m值判斷④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax﹣lnx(a∈R,a為常數(shù))
(1)當(dāng)a=﹣1時,若方程f(x)= 有實根,求b的最小值;
(2)設(shè)F(x)=f(x)ex , 若F(x)在區(qū)間(0,1]上是單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為R,f(﹣2)=2021,對任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是 ①對于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設(shè)ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)x>﹣2時,xex+2+x+4>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時,函數(shù)g(x)= (x>﹣2)有最小值,設(shè)g(x)最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)將點A(2,1)繞原點按逆時針方向旋轉(zhuǎn) ,得到點B,則點B的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,曲線C1 (θ為參數(shù)),在以平面直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系中,曲線C2:ρsin( )=1.
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)曲線C1上恰好存在三個不同的點到曲線C2的距離相等,分別求這三個點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E的焦點為F,過點F的直線lE交于A,C兩點

(1)分別過AC兩點作拋物線E的切線,求證:拋物線EA、C兩點處的切線互相垂直;

(2)過點F作直線l的垂線與拋物線E交于BD兩點,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex﹣a(x﹣1)(a∈R)
(1)若函數(shù)f(x)在x=0處有極值,求a的值及f(x)的單調(diào)區(qū)間
(2)若存在實數(shù)x0∈(0, ),使得f(x0)<0,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案