【題目】某市對城市路網(wǎng)進行改造,擬在原有a個標(biāo)段(注:一個標(biāo)段是指一定長度的機動車道)的基礎(chǔ)上,新建x個標(biāo)段和n個道路交叉口,其中n與x滿足n=ax+5.已知新建一個標(biāo)段的造價為m萬元,新建一個道路交叉口的造價是新建一個標(biāo)段的造價的k倍.
(1)寫出新建道路交叉口的總造價y(萬元)與x的函數(shù)關(guān)系式;
(2)設(shè)P是新建標(biāo)段的總造價與新建道路交叉口的總造價之比.若新建的標(biāo)段數(shù)是原有標(biāo)段數(shù)的20%,且k≥3.問:P能否大于,說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、、、(),都在函數(shù)(,)的圖像上;
(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等比數(shù)列;
(2)設(shè),函數(shù)的反函數(shù)為,若函數(shù)與函數(shù)的圖像有公共點,求證:在直線上;
(3)設(shè),(),過點、的直線與兩坐標(biāo)軸圍成的三角形面積為,問:數(shù)列是否存在最大項?若存在,求出最大項的值,若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)的“微信健步走”活動情況,現(xiàn)用分層抽樣的方法從中抽取老、中、青三個年齡段人員進行問卷調(diào)查.已知抽取的樣本同時滿足以下三個條件:
(i)老年人的人數(shù)多于中年人的人數(shù);
(ii)中年人的人數(shù)多于青年人的人數(shù);
(iii)青年人的人數(shù)的兩倍多于老年人的人數(shù).
①若青年人的人數(shù)為4,則中年人的人數(shù)的最大值為___________.
②抽取的總?cè)藬?shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)為橢圓右頂點,過橢圓的右焦點的直線與橢圓交于,兩點(異于),直線,分別交直線于,兩點. 求證:,兩點的縱坐標(biāo)之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點.
(1)當(dāng)時,求M點的極坐標(biāo);
(2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價是元/米,是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點分別為,P是橢圓上位于第一象限內(nèi)的點,軸,垂足為Q,,,的面積為.
(1)求橢圓F的方程:
(2)若M是橢圓上的動點,求的最大值,并求出取得最大值時M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com