【題目】某油庫的設計容量為30萬噸,年初儲量為10萬噸,從年初起計劃每月購進石油萬噸,以滿足區(qū)域內和區(qū)域外的需求,若區(qū)域內每月用石油1萬噸,區(qū)域外前個月的需求量(萬噸)與的函數(shù)關系為,并且前4個月區(qū)域外的需求量為20萬噸.

1)試寫出第個月石油調出后,油庫內儲油量(萬噸)與的函數(shù)關系式;

2)要使16個月內每月按計劃購進石油之后,油庫總能滿足區(qū)域內和區(qū)域外的需求,且每月石油調出后,油庫的石油剩余量不超出油庫的容量,試確定的取值范圍.

【答案】1;(2

【解析】

1)先計算,第個月共進原油,區(qū)域內調出,區(qū)域外調出,原來庫存噸,計算得到答案.

2)要求剩余油量不超過油庫容量,所以恒成立,轉化為恒成立求參數(shù)取值問題,再利用換元法求函數(shù)最值即可求解.

1)由條件得,所以

,().

2)因為

所以恒成立,

恒成立, ,則,

恒成立,

恒成立得時取等號),

恒成立得時取等號).

的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,

(1)求證:平面ABCD

(2),點FEC上,且滿足EF=2FC,求二面角FADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調區(qū)間與極值.

(2)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)的奇偶性,并說明理由

(2)討論函數(shù)的零點個數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列為首項是4,公差為1的等差數(shù)列,為數(shù)列的前項和,且。

1)求數(shù)列的通項公式;

2問是否存在使成立?若存在,求出,若不存在,說明理由;

3)對任意的正數(shù),不等式恒成立,求正數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線經過點,兩條漸近線的夾角為,直線交雙曲線于.

(1)求雙曲線的方程;

(2)若過原點,為雙曲線上異于、的一點,且直線、的斜率為,證明:為定值;

(3)若過雙曲線的右焦點,是否存在軸上的點,使得直線繞點無論怎樣轉動,都有成立?若存在,求出的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在給定的區(qū)間上滿足恒成立,則稱這兩個函數(shù)在該區(qū)間上和諧

1)若函數(shù)R上和諧,求實數(shù)a的取值范圍;

2)若函數(shù)上和諧,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案