【題目】已知圓與直線相切于點(diǎn),圓心軸上.

(1)求圓的方程;

(2)過點(diǎn)且不與軸重合的直線與圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),直線分別與直線相交于兩點(diǎn),記的面積分別是,求的取值范圍.

【答案】(1); (2).

【解析】

(1)由題可知:設(shè)圓的方程為,根據(jù)題意可得,求出,即可得到圓的方程;

(2)由題意知:

設(shè)直線的斜率為,則直線的方程為,聯(lián)立可得,同理可得. 由題意知,,,因此,,同理,

所以,由此可求的取值范圍.

(1)由題可知:設(shè)圓的方程為,

,

解得:,

所以圓的方程為.

(2)由題意知:,

設(shè)直線的斜率為,則直線的方程為,

,得,

解得:,則點(diǎn)的坐標(biāo)為,

又直線的斜率為,同理可得點(diǎn)的坐標(biāo)為.

由題意知,,,

因此,.

,同理,,

所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).

,所以的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A. 命題x2=1,x=1”的否命題為:x2=1,x≠1”

B. “m=1”直線x-my=0和直線x+my=0互相垂直的充要條件

C. 命題使得的否定是﹕,均有

D. 命題已知、B為一個(gè)三角形的兩內(nèi)角,A=B,sinA=sinB”的否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià).階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:

階梯級(jí)別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一月份的月用水量,得到如圖莖葉圖:

(1)現(xiàn)要在這10戶家庭中任意選取3家,求取到第二階梯水量的戶數(shù)的分布列與數(shù)學(xué)期望;

(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到戶月用水量為二階的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),若直線ABa成角為60,則ABb成角為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為。

1)求曲線C的極坐標(biāo)方程;

(2)設(shè)直線與曲線C相交于A,B兩點(diǎn),P為曲C上的一動(dòng)點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),

1)求實(shí)數(shù)的值;

2)若時(shí),函數(shù)的圖像恒在圖像的下方,求實(shí)數(shù)的取值范圍;

3)當(dāng)時(shí),求函數(shù)上的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),若時(shí)均有,則______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù);

(3)從成績(jī)?cè)赱50,70)的學(xué)生中人選2人,求這2人的成績(jī)都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角AB、C的對(duì)邊分別為a、b、c,且滿足b2=ac,cosB=

1)求+的值;

2)設(shè)=,求三邊a、b、c的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案