(本題滿分16分)

已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足.?dāng)?shù)列滿足為數(shù)列的前n項和.

(1)求、;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有

的值;若不存在,請說明理由.

解:(1)(法一)在中,令,,

   即       --------------------2分

解得,,           .--------3分

,

.    --------------------5分

(法二)是等差數(shù)列, . ------2分

,得 , 又,,則.  ------3分

(求法同法一)

(2)①當(dāng)為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.  ---------------------------------6分

 ,等號在時取得. 此時 需滿足.       ------7分

②當(dāng)為奇數(shù)時,要使不等式恒成立,

即需不等式恒成立.    -----------------------8分

 是隨的增大而增大, 取得最小值

此時 需滿足.      -----------------------------------------9分

綜合①、②可得的取值范圍是. ---------------------------------------------10分

(3),

 若成等比數(shù)列,則,即.…12分

(法一)由,  可得,

,                     ------------------------14分

. 

,且,所以,此時

因此,當(dāng)且僅當(dāng), 時,數(shù)列中的成等比數(shù)列.-------- 16分

(法二)因為,故,即,

,(以下同上).   --- -----------------14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù),、是常數(shù),且),對定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案