【題目】已知函數(shù),其中 R.

(1)如果曲線x=1處的切線斜率為1,求實(shí)數(shù)的值;

(2)若函數(shù)的極小值不超過,求實(shí)數(shù)的最小值;

(3)對(duì)任意[1,2],總存在[4,8],使得成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)2;(3)

【解析】

1)求得,利用曲線處的切線斜率為1列方程可得:,問題得解

2)由(1)可得:,函數(shù)的極小值不超過,說明函數(shù)有極小值,即可判斷且其極小值,可轉(zhuǎn)化成,記,利用導(dǎo)數(shù)可得上遞減,結(jié)合,即可求得,問題得解。

3)記的值域?yàn)?/span>,的值域?yàn)?/span>,“對(duì)任意,總存在,使得成立”可轉(zhuǎn)化成: 恒成立,對(duì)的大小分類,即可判斷函數(shù)的單調(diào)性,利用 列不等式即可得解。

1)由題可得:,所以

又曲線處的切線斜率為1,所以,

解得:

2

因?yàn)楹瘮?shù)的極小值不超過,說明函數(shù)有極小值

,其極小值

即:

記:,上述不等式可轉(zhuǎn)化成

當(dāng)時(shí),,

要使得,則

因?yàn)?/span>恒成立,

所以上遞減,

所以實(shí)數(shù)的最小值為

3)記的值域?yàn)?/span>,的值域?yàn)?/span>

對(duì)任意,總存在,使得成立,

成立

(Ⅰ)當(dāng)時(shí),遞增,不滿足

(Ⅱ)當(dāng)時(shí),遞減,在遞增,不滿足

(Ⅲ)當(dāng)時(shí),遞減,在遞增,

要使得 ,則

即:

整理得:

(Ⅳ)當(dāng)時(shí),遞減,在遞增,

要使得 ,則

即:

整理得:

(Ⅴ)當(dāng)時(shí),遞減,,不滿足 .

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)要考察某公司生產(chǎn)的狂犬疫苗的劑量是否達(dá)標(biāo),現(xiàn)從500支疫苗中抽取50支進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表抽取樣本時(shí),先將500支疫苗按000,001,…,499進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第7行第8列的數(shù)開始向右讀,請(qǐng)寫出第3支疫苗的編號(hào)______________________

(下面摘取了隨機(jī)數(shù)表第7行至第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求;

(2)在(1)的條件下,文明辦為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①;

②若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),.

(1)當(dāng)時(shí),求的極值;

(2)若存在實(shí)數(shù),使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒子中有8個(gè)大小完全相同的小球,其中3個(gè)紅球,2個(gè)白球,3個(gè)黑球.

)若不放回地從盒中連續(xù)取兩次球,每次取一個(gè),求在第一次取到紅球的條件下,第二次也取到紅球的概率;

)若從盒中任取3個(gè)球,求取出的3個(gè)球中紅球個(gè)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為R上的偶函數(shù),當(dāng)時(shí)當(dāng)時(shí),對(duì)恒成立,函數(shù)的一個(gè)周期內(nèi)的圖像與函數(shù)的圖像恰好有兩個(gè)公共點(diǎn),則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)判斷的單調(diào)性,并求極值;

(2)若,且對(duì)所有成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】17名學(xué)生站成一排,甲、乙只能站在兩端的排法有多少種?(結(jié)果用數(shù)值表示)

27名學(xué)生站成一排,甲、乙不能站在排頭和排尾的排法有多少種?

3)7名學(xué)生站成一排,甲、乙和丙3名學(xué)生必須相鄰的排法有多少種?

4)7名學(xué)生站成一排,甲、乙兩名學(xué)生必須相鄰,而且丙不能站在排頭與排尾的排法有多少種?

5)7名學(xué)生站成一排,甲、乙和丙3名學(xué)生都不能相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案