【題目】已知橢圓C的右焦點F(1,0),過F的直線l與橢圓C交于A,B兩點,當l垂直于x軸時,|AB|=3.
(1)求橢圓C的標準方程;
(2)在x軸上是否存在點T,使得 為定值?若存在,求出點T坐標,若不存在,說明理由.
【答案】
(1)解:設橢圓C的標準方程為 =1,a>b>0,
由已知可得: =3,c=1,
又a2=b2+c2,
解得 ,
故所求橢圓C的方程為 =1
(2)解:設存在滿足條件的點T(t,0),
當直線AB斜率不為0時,可設直線AB為x=my+1,A(x1,y1),B(x2,y2),
將x=my+1代入C得(4+3m2)y2+6my﹣9=0,
顯然△>0,且y1+y2= ,y1y2= ,x1+x2= ,x1x2= .
∴ =(x1﹣t)(x2﹣t)+y1y2=x1x2﹣t(x1+x2)+t2+y1y2= +t2﹣2t+1,
要使 為定值須有 = ,得t= ,
此時T( ,0), 為定值﹣ .
當直線AB斜率為0時, =﹣ .
故存在點T( ,0)滿足題設
【解析】(1)設橢圓C的標準方程為 =1,a>b>0.,由已知可得: =3,c=1,又a2=b2+c2 , 解出即可得出.(2)設存在滿足條件的點T(t,0),當直線AB斜率不為0時,可設直線AB為x=my+1,將直線方程代入C得(4+3m2)y2+6my﹣9=0,利用根與系數(shù)的關系、向量數(shù)量積運算性質(zhì)可得: = +t2﹣2t+1,要使 為定值須有 = ,得t,即可得出;當直線AB斜率為0時, 直接得出.
科目:高中數(shù)學 來源: 題型:
【題目】某校高一某班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(Ⅰ)求分數(shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(Ⅲ)若規(guī)定:75(包含75分)分以上為良好,90分(包含90分)以上為優(yōu)秀,要從分數(shù)在良好以上的試卷中任取兩份分析學生失分情況,設在抽取的試卷中,分數(shù)為優(yōu)秀的試卷份數(shù)為X,求X的概率分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當a=3時,方程的解的個數(shù);
(2)對任意時,函數(shù)的圖象恒在函數(shù)圖象的下方,求a的取值范圍;
(3)在上單調(diào)遞增,求a的范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD為梯形,AD∥BC,BC=6,PA=AD=CD=2,E為BC上一點且BE= BC,PB⊥AE.
(1)求證:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=的定義域為R.
(1)求a的取值范圍;
(2)若函數(shù)f(x)的最小值為,解關于x的不等式x2-x-a2-a<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com