【題目】某機構(gòu)為了研究人的腳的大小與身高之間的關(guān)系,隨機測量了20人,得到如下數(shù)據(jù):

(1) 身高大于175厘米的為高個,身高小于等于175厘米的為非高個;腳長大于42的為大腳,腳長小于等于42的為非大腳,請根據(jù)上表數(shù)據(jù)完成下面的2×2列聯(lián)表.

(2)根據(jù)(1)中的2×2列聯(lián)表,在犯錯誤的概率不超過0.01的前提下,能否認為腳的大小與身高之間有關(guān)系?

,

【答案】(1)見解析(2) 99%的把握認為腳的大小與身高之間有關(guān)系

【解析】

(1)由題意完成題中的列聯(lián)表即可;

(2)據(jù)2×2列聯(lián)表可得K2≈8.802>6.635,則有99%的把握認為腳的大小與身高之間有關(guān)系.

(1)

(2)據(jù)2×2列聯(lián)表可得K2=≈8.802.

8.802>6.635,

∴有99%的把握認為腳的大小與身高之間有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個直角三角形的三個頂點分別在底面棱長為2的正三棱柱的側(cè)棱上,則該直角三角形斜邊的最小值為__________

【答案】

【解析】如圖,不妨設(shè)處, ,
則有
該直角三角形斜邊

故答案為.

型】填空
結(jié)束】
16

【題目】已知函數(shù)f(x)=,g(x)=,若函數(shù)y=f(g(x))+a有三個不同的零點x1,x2,x3(其中x1<x2<x3),則2g(x1)+g(x2)+g(x3)的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次考試共有10道選擇題,每道選擇題都有4個選項,其中有且只有一個是正確的.評分標準規(guī)定:每題只選一個選項,答對得5分,不答或答錯得零分.某考生已確定有7道題的答案是正確的,其余題中:有一道題都可判斷兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只好亂猜.試求出該考生:

Ⅰ)得50分的概率;

Ⅱ)所得分數(shù)的數(shù)學(xué)期望(用小數(shù)表示,精確到0.01k^s*5#u)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0,且a≠1)的圖象上關(guān)于y軸對稱的點至少有5對,則實數(shù)a的取值范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解高中生作文成績與課外閱讀量之間的關(guān)系,某研究機構(gòu)隨機抽取了60名高中生,通過問卷調(diào)查,得到以下數(shù)據(jù):

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

由以上數(shù)據(jù),計算得到K2的觀測值k≈9.643,根據(jù)臨界值表,以下說法正確的是(  )

A. 沒有充足的理由認為課外閱讀量大與作文成績優(yōu)秀有關(guān)

B. 0.5%的把握認為課外閱讀量大與作文成績優(yōu)秀有關(guān)

C. 99.9%的把握認為課外閱讀量大與作文成績優(yōu)秀有關(guān)

D. 99.5%的把握認為課外閱讀量大與作文成績優(yōu)秀有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,已知圓C的圓心坐標為(2,0),半徑為 ,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標方程;
(2)點P的極坐標為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+2 sinωxcosωx﹣1,且f(x)的周期為2.
(Ⅰ)當 時,求f(x)的最值;
(Ⅱ)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是一正方體被截去一部分后所得幾何體的三視圖,則該幾何體的表面積為(

A.54
B.162
C.54+18
D.162+18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方向向量為v=(1, )的直線l過點(0,﹣2 )和橢圓C: =1(a>b>0)的焦點,且橢圓C的中心關(guān)于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(﹣2,0)的直線m交橢圓C于點M、N,滿足 = .cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案