【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).
(1)若、且,證明:函數(shù)必有局部對稱點(diǎn);
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)見解析(2)(3)
【解析】
(1)根據(jù)定義轉(zhuǎn)化為方程,根據(jù)證明方程有解得結(jié)果;
(2)根據(jù)定義轉(zhuǎn)化為方程,利用變量分離轉(zhuǎn)化為求對應(yīng)函數(shù)值域,即得結(jié)果;
(3)根據(jù)定義轉(zhuǎn)化為方程,利用換元轉(zhuǎn)化為對應(yīng)一元二次方程有解問題,再根據(jù)實(shí)根分布求結(jié)果.
(1)由題意得
根據(jù)定義可得函數(shù)必有局部對稱點(diǎn);
(2)因?yàn)楹瘮?shù)在區(qū)間內(nèi)有局部對稱點(diǎn),
所以,即在區(qū)間內(nèi)有解,
設(shè),則在單調(diào)遞增,在上單調(diào)遞減,所以
(3)因?yàn)楹瘮?shù)在上有局部對稱點(diǎn),
所以在上有解,
設(shè),則,即在上有解,所以或,
或,即得
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)對x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實(shí)數(shù)m的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的華為手機(jī)專賣店對該市市民使用華為手機(jī)的情況進(jìn)行調(diào)查.在使用華為手機(jī)的用戶中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻率分布直方圖如圖:
(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)的估計(jì)值(均精確到個(gè)位);
(2)在抽取的這100名市民中,按年齡進(jìn)行分層抽樣,抽取20人參加華為手機(jī)宣傳活動,現(xiàn)從這20人中,隨機(jī)選取2人各贈送一部華為手機(jī),求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若點(diǎn)在的圖像上運(yùn)動,則點(diǎn)在的圖象上運(yùn)動
(1)求的最小值,及相應(yīng)的值
(2)求函數(shù)的解析式,指出其定義域,判斷并證明在上的單調(diào)性
(3)在函數(shù)和的圖象上是否分別存在點(diǎn)關(guān)于直線對稱,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合均為實(shí)數(shù)集的子集,記.
(1)已知,試用列舉法表示;
(2)設(shè),當(dāng)且時(shí),曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;
(3)在(2)的條件下,對于滿足,且的任意正整數(shù),不等式恒成立, 求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線:上的動點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線與曲線,分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)時(shí),求函數(shù)在上最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com