(本題滿分14分)
已知函數(shù)且存在使
(I)證明:是R上的單調增函數(shù);
(II)設其中 
證明:
(III)證明:


(I)∵是R上的單調增函數(shù).
(II)∵, 即.又是增函數(shù), ∴.
.又,
綜上, .用數(shù)學歸納法證明如下:
(1)當n=1時,上面已證明成立.
(2)假設當n=k(k≥1)時有.
當n=k+1時,由是單調增函數(shù),有,

由(1)(2)知對一切n=1,2,…,都有.
(III)
.
由(Ⅱ)知

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知
⑴求的值;      ⑵判斷的奇偶性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)為定義域上單調函數(shù),且存在區(qū)間(其中),使得當時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)當,且時,求的值;
(2)是否存在實數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分) 函數(shù)是定義在(-1,1)上的奇函數(shù),且
(1)求函數(shù)的解析式
(2)利用定義證明在(-1,1)上是增函數(shù)
(3)求滿足的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)。
(1)當時,求函數(shù)的最小值;
(2)當時,試判斷函數(shù)的單調性,并證明。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)利用單調函數(shù)的定義證明:函數(shù)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知的反函數(shù)為
(1)若函數(shù)在區(qū)間上單增,求實數(shù)的取值范圍;
(2)若關于的方程內有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)y=f(x)= (a,b,c∈R,a>0,b>0)是奇函數(shù),當x>0時,f(x)有最小值2,其中b∈N且f(1)<.試求函數(shù)f(x)的解析式

查看答案和解析>>

同步練習冊答案